
AD-A GG 950 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE-ETC F/G 9/2

I AN G0 A REUVENI

N00014-75-C-0661
UNCLASSIFIED MT/LCS/TR-226 L

mhhhmmhhhhhhlm
-EhmhhEEEmhEI
-EEmhmhohmhI

EhhEEmmhhE

11111~ 1. * l*8
ii ,1- , .

IIII 8

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

I A S/1 -2 (

SECURITY CLASSIFICATION OF THIS PAGE (When Dom, Eatmd)

REPORT DOCUMENTATION PAGE ADW I1"N

I. RPOR NUM112 GOVT ACCESSION NO . RECIPIENT'lS CATALOG NUMBER

4. TITLE (and Subt.) S.TYPE OF REPORT A PERIOD COVERED

'l e Event Based Ianguage and Its Multiple Ph.D. Thesis - January 1980
Processor implementations, v MIT/wsfIm-2 2'.RPRTNME

AUTHOR~e

Ashr/Reuveni
_ _ _ _ _ _

SPERFORMING ORGANIZATION NAME AND ADDRESS O.PROGRAM ELEMENT. PROJECT. TASK

%I. CONTROLLING OFFICE NAME AND ADDRESS I*1flOA

'14 MONITORING AGENCY NAME A ADORIESS(If differentE irom, Controling Office) 55. SECURITY CLASS. (of hi rle port)

cuVDepartment of the Navy Ucasfe
Information System. program
Arlington, VA 22217 ~ ' - s.DECL ASSI FICATION/ DOWNGRADING

15. DISTRIBUTION STATEMENT (of #him Report)

* This document has been approved for public release and sale;
its distribution is unlimited

17. DISTRIBUTION STATEMENT (of Cho obstrect entered In Block 2.it different howr Report)p

IS. SUPPLFMENTARY NOTES.1

A
kS~ KEY WORDS (Continue on reverse old* It necesary and Identify by block amber)

progranlng languages event handlers NP-=Vmlete
parallel progrming EBL
cicurrency nvdiAarity
synchronization primitives networks
events dt c

20. A1SWZ~ u on reverse side If necessary on. .dentify by bMock nmmbor)

0V~ research defines and analyze* a simple language for parallel progreaming
which Is designed for multiple processor systems. The language (EBL) Is based on events
which provide the only control mechanism. Events are expticfy caused by theprogram, andthey activate Instances of dynamic program units called event handlers. The dnly operation
that can be performed by an Instance of an event handier Is the causing of new events.
The language constructs are primitive-, nevertheless, the capability of hierarchical Program
design Is provided via static modules and other modularity sources.

DD I JA7 1473 EDITION OF I NOV S5l18 OBSOLETE 4/742 .~&/

SECURITY CLASSIFICATION OF THIS PAGE(WeDtenee)

uscumT4? CLA-FICAT?@ OF T1118 PA5GUMi 00 Abi

20.l

assignment statements, goto statements, Iteration constructs, procedures, functions, and
semaphores; however, these can be easily modeled. In addition, events allow activatiou of
parallel processes, synchronization of parallel processes, mutual exclusion, message
passing, immutable objects, and the effect of mutable objects.

Schemes for Implementation of the language on processor networks are
Investigated. An Implementation scheme based on communicating managers which operate
without any centralized control Is described. A relaxed distributed locking algorithm In which
deadlocks are prevented Is developed; It does not assume a total order on all objects to be
locked. Several optimization problems, e.g., optimal distribution of objects In a network, are
Investigated. problems are shown to be NP-hard and heuristic algorithms we suggested.
Implmonts schemes of the language on a data flow processor are described. These
add to the pr the capability of procedures, and synchronization primdtves such as
semaphores.

I.

C

1 N,, ISCuSoTr CL,,SgICA? OP ThUI pASE -Bags

F - -.. - -- -

THE EVENT BASED LANGUAGE AND ITS

MULTIPLE PROCESSOR IMPLEMENTATINS

Asher Reuveni

Accession For
NTIS GFA.&I
DtDC TAB

t Unwnwnoced
Justif ication_

This research was supported by the Advanced Research Projects Agency of the DepartmentofDfneadwsmntrdb h fie fNvlRsac ne otatnme
1100014- 75-C-06 1.0 ahu tt nttt tecooy I

Massachusetts Institute of Technology
Laboratory for Computer Science

ti.Cambridge Massachusetts 02189

1~..80 3 14 A M

THE EVENT BASED LANGUAGE AND ITS

MULTIPLE PROCESSOR IMPLEMENTATIONS

by

ASHER REUVENI

Submitted to the Department of Electrical Engineering and Computer Science
on January 4, 1980 In partial fulfillment of the requirements

for the Degree of Doctor of Philosophy.

Abstract

This research defines and analyzes a simple language for parallel programming
which is designed for multiple processor systems. The language (EBL) is based on events
which provide the only control mechanism. Events are explicitly caused by the program, and
they activate instances of dynamic program units called event handlers. The only operation
that can be performed by an Instance of an event handier is the causing of new events.
The language constructs are primitive; nevertheless, the capability of hierarchical program
design is provided via static modules and other modularity sources.

The language does not contain conventional constructs such as: variables,
assignment statements, goto statements, Iteration constructs, procedures, functions, and
semaphores; however, these can be easily modeled. In addition, events allow activation of
parallel processes, synchronization of parallel processes, mutual exclusion, message
passing, immutable objects, and the effect of mutable objects.

Schemes for implementation of the language on processor networks are
investigated. An implementation scheme based on communicating managers which operate
without any centralized cintrol is described. A relaxed distributed locking algorithm in which
deadlocks are prevented is developed; it does not assume a total order on all objects to be
locked. Several optimization problems, e.g., optimal distribution of objects in a network, are
investigated. The problems are shown to be NP-hard and heuristic algorithms are suggested.
Implementation schemes of the language on a data flow processor are described. These
add to the processor the capability of procedures, and synchronization primitives such as
semaphores.

Name and Title of Thesis Supervisor:

Stephen A. Ward,
Associate Professor of Electrical Engineering and Computer Science

Key Words and Phrases:

programming languages, parallel programming, concurrency, synchronization
primitives, events, event handlers, EBL, modularity, networks, data flow,
NP-complete

, I

-4-

ACKNOWLEDGEMENTS

I would ike to thank my thesis supervisor, Professor Steve Ward, for his support

and encouragement. Steve's desire for simplicity, and constructive criticism were most

valuable. My thesis readers, Professors Carl Hewitt and David Reed, provided many helpful

suggestions that improved the content and representation of the thesis. Professor Adi

Shamir is gratefully acknowledged. The relatively few discussions we had were most fruitful

end stimulating.

Many fruitful discussions with Chris Cesar and N Mok of the Real Time Systems

group at M.I.T. helped In crystallizing some of my Ideas. The members of the Real Time

Systems group at M.I.T. which maintained the UNIX system used to produce this document

are acknowledged. Clark Baker, who developed the software used to automatically Include

drawings In documents, and Chris Cesar helped by solving many problems encountered

during the editing of this document.

My wife, Sara, deserves my warmest thanks and gratitude for her love, patience,

and encouragement during the last three years. By virtually assuming the responsibility for

taking care of our two children and all daly problems, she created a most convenient and

pleasant environment. Her task was not easy especially due to the long distance from M.I.T.

to our home country. Our parents deserve special thanks for encouraging me to pursue my

doctoral studies despite the knowledge that as a side effect they will miss us for a few

I. yesew.

..)

r

Table of Contents -8-

CONTNT

Table of Fliures 10

1.1 Mtotvaon-.............. o I I
1o Mmlrad ln o...................o. I11

1.2 ReseMach oale .. 12
1.3 Our Approach 18
1.4 The Event Model 14
1.6 Relation to Message Passing Models .. IS
1.6 Our Main Contributions 21
1.7 Plan of the Thesis 28

2. OvervIew of EBL ... 26

2.1 Events and Event Classes ... -26
2.2 Event Handlers 23
2.3 Tag Identifiers .. 81
2.4 Type Identifiers ... 82
2.8 Modules ... 82
2.6 Program .. 84
2.7 Event Relations 8I. 2.8 System Events .. 8. 8
2.6 Example ... as
2.10 Fairness ... 41
2.11 Summary 46

. Relation toOt.er..e.................................... 47

8.1 Relation to Other Models ... 47
3.2 Mutable Objects 6..................................... 52
8.8 Modularity Issues. o .. 64
8.4 Parallelism In the Language 67
8.6 Synchronization Capabilities ... 8
8.6 COP, Events, and Actors 61
8.7 Relation to Pattern Directed Invocation Languages 64

|- 3.8 Relation to Production Systems 66
8.9 Relation to Petri Nets .. 67
8.10 Relation to Databases ... 71
8.11 Summary ... 72

12,

-6- Table of Contents

4. Definition of the Language 73

4.1 Identifiers and Numbers 74................... 74
4.2 Constants .. 74
4.3 Types and Type Identifiers 78

4.8.1 Type Identifier Definition 76
4.4 Declarations ... 76

4.4.1 Event Class Identifier Declaration 76
4.4.2 Tag Identifier Declaration 77

4.6 Expressions ... 77
4.5.1 Integer Expression .. 76
4.6.2 Boolean Expression........ 78
4.5.3 Character Expresssion.... 80
4.5.4 Non-Basic Expression 80

4.6 Event Handlers ... a
4.6.1 Where Clause Predicates .. 83

4.7 Modules ... 84
4.8 Programs and System Events ... 8
4.9 Summary 86

6. Expressive Power of EBL .. 87

6.1 Goto Statement .. 8
5.2 If Statement .. so
6.3 While Statement ... 90
8.4 Procedures 91
5.6 Functions 93
5.6 Variables .. 93
8.7 Assignment Statement ... 96
6.5 Semaphores ... 8
5.9 Extensions to EBL 100

8.9.1 Extended EBL .. 100
5.9.2 Translation from XEBL to its Kernel 101
8.9.3 Translation from the Kernel to EBL 102

8.10 Summary ... 104

6. Classical Exmples .. 10

6.1 "Recursive" Linear Fibonacci .. 105
6.2 The Readers Writers Problem ... 107
6.3 Airline Reservation System ... 111

. 6.4 Disk Head Scheduler ... 113
6.8 The Five Dining Philosophers ... I18
6.6 Summary .. 117

9l I l-I.---. ..

, * *,,

Table of Contents -' -

& 7. Virtual System Implementation .. 118

7.1 Overview .. 11
7.2 The Virtual System ... 122
7.3 The Event Handler Manager .. 123
7.4 The Acquisition Algorithm ... 125
7.6 The Event Space .. 132
7.6 Finding Matching Event Collections .. 133

7.6.1 Case 1: Multi use Event Handler without Predicates . 133
* 7.6.2 Case 2s Single use Event Handler without Predicates 136

7.6.3 The Effects of Predicates ... 137
7.6.4 Case 3: Multi-use Event Handler with Predicates 139
7.6.5 Case 4: Singleuse Event Handler with Predicates 141

7.7 Current Event Space Boundaries ... 144
7.8 The Event Class Manager ... 158
7.9 Event List Organization ... 153
7.10 Requests from an ECM .. 166
7.11 Fairness .. 160
7.12 Optimizations 167

7.12.1 Sorting an Event List .. 168
7.12.2 Preventing Re-evaluation of Expressions 170
7.12.3 Event Class as a Counter 171
7.12.4 Event Class as a Record Variable 172
7.12.8 Event Class as an Array of Records 173
7.12.6 Combined EHM's 174
7.12.7 Eliminating Redundant Events and Event Handlers 175

7.13 Tag KIandling and Tag Optimizations 177
7.14 Summary ... 179

8. Network Impleenentation ... 160

8.1 Object Management ... 181
8.2 Initial Object Distribution ... 185
8.3 The Cost Function .. 167
8.4 The Object Distribution Problem .. 190
8.5 Network Design Problems 192
8.6 Approximate Algorithms 195
8.7 Heuristic Object Distribution Algorithms 197

8.7.1 The Distribution Improvement Algorithm 107
8.7.2 All in One (AIe) log
6.7.3 Best Fit (BF) log
8.7.4 Spiral Best Fit (SBF) .. 200
8- 6.7.5 Limited Search SBF (LSBF) .. 200

8.7.6 Complexity of the Algorithms ... 202
8.6 Generating Initial Reference Trees 208
8.9 A Heuristic Initial Tree Algorithm .. 208

* 1, 8.10 Performance Evaluation .. 210
6.11 Summary ... 210

1Nil

- 8 - Table of Contents

9. Data Flow Iplenientation ... 211

9.1 The Processor Architecture 214
9.2 The One at a Time Scheme ... 216
9.3 Some Basic Problems ... 219

9.3.1 The Merge Problem ... 219
9.3.2 The State of a Process ... 225
9.8.8 The Alarm Problem .. 226
9.3.4 The Multi-State Process Problem 227
0.8.6 Instruction Cell Modifications ... 229

9.4 The Pipeline Scheme 281
9.5 The Multiple Script Copies Schemes 234
9.6 The Virtual Memory Fixed Schemes 235
9.7 The Script Copying Schemes .. 237
9.6 The Memory System .. 240

9.6.1 Storage Organization .. 241
9.8.2 The Memory Controller .. 242
9.8.8 Congestion Deadlocks Due to the Memory System 248

9.9 Performance Evaluation 26
9.10 Summary ... 24

10. Conclusions and Directions for Further Research 247

10.1 Summary and Conclusions .. 247
10.2 Directions for Further Research ... 262

11. References .. 264

Appendix A. The Formal Syntax ... 260

A.1 Identifiers and Numbers ... 260
A.2 Constants ... 260
A.8 Types and Type Identifiers ... 280

A.8.1 Type Identifier Definition .. 261
A.4 Declarations ... 261

A.4.1 Event Class Identifier Declaration 261
A.4.2 Tag Identifier Declaration 261

A.6 Expressions .. 262
A.6.1 Integer Expression 262
A.6.2 Boolean Expression ... 262
A.8.8 Character Expreassion 268
A.6.4 Non-Basic Expression .. 268

A.6 Event Handler ... 268
A.6.1 Event Handler Heading .. 268
A.6.2 Where Clause Condition .. 264
A.6.8 Event Handler Body .. 264

A.7 Module 264
A.S Program 26

- . -..

Table of Contents--

Appendix B. Network Performance Evaluation 266

8.1 The Model... 266
8.2 Maximum Possible Throughput..................................... 266
8.3 Other Event Types ... 274
8.4 The Effect of Managers ... 276
8.5 Throughput Analysis Summary 280

Appendix C. Data Flow Performance Evaluation 282

C.1 Maximum Possible Throughput 283
C.2 The Effect of Managers ... 285
C.3 Throughput Analysis Summary 286

Biographical Note .. 288

-~ jog----

- 10 - Table of Figures

FIGURES

2.1 Factorial sum ... 39
2.2 Events ordering... 41
3.1 Petri net representation of a subprogram .. 66
3.2 Modeling multi use recurrent events .. 89s
7.1 The requests graph G .. 120
7.2 The reduced graph 6'... 130
7.3 A partial order P on object classes.. 130
7.4 An event space ... 133
7.5 State diagram of a list element .. 164
7.6 State diagram with failure counters... 186
9.1 The basic data flow processor .. 211
0.2 The basic data flow processor with the memory system 215
9.8 A nondeterminate merge... ;.................... 220
9.4 Safe nondeterminate merge.. 221
9.5 The data flow processor with the request network 222
9.6 Last In out ... 226
9.7 Switching an actor's output.. 227
9.6 Instruction cell representation ... 228
9.9 A FIFO... 230
9.10 Coll representation of a FIFO .. 231
B.1 The Interactions among managers and scripts...................................... 277
C.1 The routing networks ... 282

Introduction - 11 - Section 1

1. Introduction

The research described in this thesis deals in the first part with EBL, an event

based language for parallel programming which is designed for multiple processor

applications, and In the second part with strategies for Its implementation on multiple

processor systems.

1.1 Motivation

The decreasing cost of computer hardware will cause building of more and more

multiple processor systems of various kinds. Examples of such systems are: C.mmp [Wu-72],

Pluribus [He-73], Data Flow [De-75], the boolean n-cube parallel machine [Su-77], and the

MuNet [Wa-78b]. However, most of today's programming languages are not designed to

exploit the concurrent processing capabilities offered by such systems.

The classical languages such as ALGOL, or FORTRAN do not support parallelism at

all. PL/1 has a multi-tasking capability, therefore one can easily express in the language a

process spawning concurrent processes. Unfortunately, the language lacks adequate

primitives for synchronization of concurrent processes [Mo-76]. It does not provide, for

example, any mechanism supporting mutual exclusion; thus, to achieve mutual exclusion

among concurrent processes one must resort to some form of busy waiting, a solution which

wastes computational resources.

More modern languages such as MODULA [WI-77b], CONCURRENT PASCAL

[BHt-75], and communicating sequential processes [Ho-78a] provide for parallelism (as well

.h. as synchronization primitives), but only In .the limited form of sequential processes. These

12 4

Section 1.1 - 12 - Motivation

languages have certain disadvantages: In MODULA only the main process can activate other

processes, thus the rate of spawning new activities is limited. Communicating sequential

processes Is a static language. The maximum number of concurrent processes is bounded,

and the set of processes with which a process can communicate Is fixed and can be found

from the program text.

Languages based on message passing models of computation such as the Actor

model [He-76] do not suffer from the above disadvantages. Our model is reminiscent of

message passing models but there are some fundamental differences which are discussed In

section 1.5.

1.2 Research Goals

The language design goals have been:

1. High expressive power and universality, especially suitable for expressing

parallel computations in a distributed processing environment.

2. A small number of constructs, even to the extent of obtaining only a base

language.

3. The capability of hierarchical (top down) program design, and the ability of

creating encapsulated program units that can be designed and checked in a

modular way. Such features are especially Important In a language for parallel

programming.

4. A reasonable implementation; although the language has not been Implemented,

Implementation Issues Influenced many of the decisions made during the design.

A Wong

Research Goals - 13 - Section 1.2

Another goal of this research has been the investigation of strategies for

implementation of the language on multiple processor systems. Our primary interest has been

the exploitation of concurrency within programs; therefore, we hate concentrated on two

types of systems which seem suitable: a processor network, and a data flow processor

[De-77]. A processor network is attractive not only because of its potential computing

power, but also because of its scaling characteristics. In contrast to conventional systems,

a processor network is not limited by dependencies on shared resources which become

bottlenecks as the system's size increases [Wa-78b]. The data TIMo processor has been

selected since it is designed to achieve a highly parallel opt-ration. Our implementation

schemes are not restricted to the above types of systems; they can be easily adapted to

other systems.

1.3 Our Approach

Our approach to the language design was partially motivated by our desire to

investigate the intrinsic power of eventb. We asked ourselves whether a language in which

events provide the only control mechanism can be designed, or whether additional

constructs are essential. In order to find the answer we tried to see what is the Inherent

power of events: what do they capture, what computations can be expressed in a language

using only events, and which conventional control structures can be expressed In terms of

events. We approached the problem by going almost to the extreme case. The defined

language is very condensed and it has no convetsional control structures or data structures.

In particular, the language does not contain variables, assignment statements, goto

statements, Iteration constructs, procedures, or functions.

I

r....... ---. .

..k

Section 1.8 -14- Our Approach

Our approach to implementation of the language has been to exploit the various

sources of parallelism In a program. For this reason schemes relying on centralized control

have not been considered. Instead, our basic Implementation scheme Involves many

managers communicating with each other. The role of a manager is limited; each manager

handles one event class or one (normally small) program unit.

Distributed Implementations are harder than single processor Implementations.

One encounters more difficulties when implementing a distributed database than in the case

of a conventional (single processor) database. The price paid for achieving higher

concurrency (as well as other advantages) in the case of a distributed database is that

some of the operations require special mechanisms for their correct implementation. For

example, locking of objects, and maintaining consist-.ncy are more difficult to implement in a

distributed system. It Is not surprising, therefore, that similar problems have been

encountered in the course of designing Implementation schemes for our language. Various

techniques have been devised in this research for solving these problems.

1.4 The Event Model

Other formalizations of the event notion have been done by several message

passing models of computation, e.g., the Actor model [He-76], and the mu calculus [Ha-78,

Wa-78a]. Their notion of event differs from ours and the differences are discussed in

section 1.6. The following description of our model is not formal; our language formalizes It.

Only the fundamental properties of our model are described In this section; many of the

features are abstracted (some of them are given in the next chapter) and only those

needed for comparison with other models of computation are given.

4r2 -
. I I II I

The Event Model -15- ection 1.4

In our model, -svents are abstract erthki s that are explicitly c3ueed Dy the

program during the course of the computation. An event object is created upon each

occurrence of an event and it carries Information on the nature of Its occurrence. The

occurrence of an event can be remembered forever, i.e., the corresponding event object is

permanent, or can be forgotten at some stage of the computation, i.e., the correspondng

event object is temporary. The distinction between these two kinds of behavior Is done

syntactically, on the basis of explicitly declared types. In the foemer case, an event may

have several direct effects and it Is called a multluse event. In the letter case, it may

have at most one direct effect after which It Is forgotten; in this case the event is a

single use event. A direct effect of an event Is the activation of an Instance of a program

unit (an event handler). In our model the program consists of fixed program unite (the

number of program units and their identities are fixed); an Instance of a program unit Is

activated when several events satisfying some condition specified by the program unit have

occurred. Once an Instance of a program unit is activated It causes some events and then

vanishes.

The occurrence of an event is brought to knowledge of (broadcast to) all program

units and thus may activate Instances of more than one program unit (if the corresponding

event object is permanent), each causing more events. The information about the nature of

an event occurrence cannot be modified: It either remains unchanged forever (if the event

object is permanent), or Is totally forgotten (if the event object is temporary). The latter

I .. happens when the event activates an instance of a program unit; one of the effects of such

* activation can therefore be thought of as uncausing (forgetting) the event. The ability to

uncause an event Introduces mutable objects to the model, and this will be examined in

1 -

Section 1.4 -16- The Event Model

section 8.2.

An instance of a program unit causing an event does not know and has no contl

over. what program units will be affected by it. how many instances of program units will be

affected, and when will they be affected. Each program unit knows which events have

occurred so far and thus can autonomously decide which of them is relevant to It and should

affect it. In this respect, program units are reminiscent of daemons (event driven

procedures; see for example [Pf-74, WI-77a]), or knowledge sources of Hearsay [Le-76].

In our model as presented so far, there is basically one global environment for

events accessible to all program units. This is different from models supporting local (or

nested) environments such as block structured languages, the lambda calculus, or the mu

calculus, where the structure of the program determines the various environments.

The main advantage of a global environment is that every program unit can

access all objects, and thus all program units can communicate with each other. Such

unrestricted access capabilities add to the expressive power of the language, e.g., in

comparison to the mu calculus where a message can be only sent to nested receivers. On

the other hand, the lack of local environments has several disadvantages such as: lack of

modularity on Its various aspects (e.g., local name spaces, local objects, protection of

objects, abstract data types, or encapsulated program units), or lack of temporary objects

(i.e., bad storage utilization).

Our language manifests some compromise betwee~i one global environment andI.
local environments. It contains several mechanisms (e.g., modules, event classes, formal

parameters) which eliminate some of the disadvantages of a global environment while

12h

° -.-. -- - -

The Event Model -17- Section 1.4

allowing the programmer to control the extent to which objects are accessible to program

units.

Modularity is manifested In several forms In the language. The first source of

modularity stems from our modules (which are defined in the next chapter). Modules allow

hiding and sharing of identifiers between program units, protection of object liasses (event

classes) against undesired uses, creating encapsulated prof.'am units and abstract data

types, top down and bottom up designs.

Another source of modularity (bette, called freedom) stems from the fact that the

order of program units (event handlers) in the program has no effect on the meaning of the

program. This relaxes the constraint of most existing programming languages where

consecutive steps In an algorithm are typically adjacent in the program text (except where

transfer of control occurs). In cur case, the ai%,irithm for handling an event can be

distributed in the program text. This freedom does not necos-tarily contribute to program

modularity; however, it allows the program to be organizeded in some meaningful structure.

. For example, a real time program for controlling a phy3lc-I system such as a car, can be

constructed as a collection of modules that reflects the etuC ture of the physical system;

each program module will correspond to some physical module. On replacement of one

physical module, only the corresponding program module has to be modified.

I.

tb .r

Section 1.6 - 18 - Relation to Message Passing Models

1.5 Relation to Message Passing Models

A possible way to understand this model is by describing Its behavior in terms of

message passing models such as the Actor model [He-76], or the mu calculus model [Ha-78,

Wa-78a]. The basic computational step in a message passing model Is passing a message

from one instance of a program unit to another Instance of a program unit. In the event

model, the basic computational step Is causing an event by one instance of a program unit.

This can be thought of as broadcasting a message to some ether enclosing all program units

(akin to ETHER [Ko-79]). Another way to understand it is as writing something on a

blackboard accessible to all program units (akin to Hearsay [Le-75]).

Our basic computational step does not Include the receipt of the message by

other program units since no explicit target is associated with the message. Therefore, our

basic computational step consists only of broadcasting the message to the ether. The

message describes the nature of the event occurrence; It carries both values and control

Information. A program unit (conceptually) continuously examines the ether and when It

finds a collection of relevant messages, an Instance of the program unit Is activated.

We distinguish between permanent and temporary messages. A message of the

first kind cannot be removed from the ether (-irased from the blackboard); it can be

examined by more than one program unit, and cause activation of several Instances of

program units. A message of the second kind is deleted from the ether when It causes the

activation of an Instance of a program unit. In both cases, a message In the ether Is anI.
Immutable object since it describes the nature of a past event.

21Z

r~ -- r-

Relation to Message Passing Models - 9-Section 1.5

A program unit can remove from the ether one or more messages (uncause one or

more single use events) in an atomic action. This allows easy solutions to synchronization

problems such as the five dining philosophers (see chapter 6). A program unit need not

specify the order In which It processes messages fevents) from a certain class; this can be

left for the system. However, a program unit can specify some desired order, e.g., a FIFO

order. Other orders can be specified and this allows easy solutions to scheduling problems

such as the (minimum distance) disk head scheduler (see chapter 6).

Some of the fundamental differences between EBL and languages based on the

Actor model, PLASMA [He-76] and Acti [He-79], are discus-ad now.

1. The concept of event Is different. In the Actor model, an event Is defined as the

receipt of a message by an actor, whereas In EBL's model, the occurrence of an

event can be associated with the transmission of a message (an event object).

2. A message In the Actor model specifies an explicit target, whereas no target is

specified by an EBL event. This allows the same message (event) to be

detected by more than one program unit and thus adds to the expressive power

of EBL. The price for this Is paid by the receivers which have to find the

messages in which they are interested.

3. Events in EBL (more precisely event cinses) are named, while the Actor model

has no mechanism for naming events or messages. This allows a program unit to

specify the message classes in which it is Interested. This capability adds to the

expressive power but the tradeoffs are similar to those related to the lack of

explicit targets.

r 4. EBL Is strongly typed while PLASMA Is no, a typed language. There Is a greater

12.4

Section 1.6 -20- Relation to Message Passing Models

programming freedom In a non-typed language; however, fewer checks can be

done at compile time, and certain run time errors that could have been detected

at compile time may occur In a non-typed language. Note that Act1 Is a typed

language.

5. Messages (event objects) In EBL are restricted, and must be of fixed types. In

the Actor model, the structure of a message M sent from actor A to actor B Is not

restricted. The message M can he any actor; it can carry data or even an

explicit algorithm that B can activate. A possible analogue In EBL would be

allowing an event handler as a parameter of an event. We have not Included

such a capability In EBi because It complicates the language and its usefulness

Is not apparent.

6. In EBL there Is a complete separation between algorithms and state Information

(control or data) they need for their execution. Algorithms are represented by

event handlers which are therefore pure, and all state Information Is represented

by events. In the Actor model the separation exists only for unserlalized actors

since a serialized actor has a state associated with It. In general, a pure

algorithm has an advantage in a distributed system since multiple copies of It can

be kept In the system and each can be activated whetiaver the Information it

needs arrives.

7. EBL's feature of one (multi_use) event directly activating several Instances of

event handlers, has no analogue in PLASMA and Act1. ETHER [Ko-79], which is

also based on the Actor model, has a similar capability.

6. PLASMA and Act1 are based on a message passing model of computation, but

they both rely on other control mechanisms (e.g., a case statement) In addition to

... il.il.I I

Relation to Message Passing Models - 21 - Section 1.5

message passinig. EBL Is based on events and uses them as the only control

mechanism

One advantage of a message passing model over a procedure based model is

achieved by using continuations [St-74, He-76, Ha-78, Wa-78a]. Instead of waiting for the

result of a procedure, the program unit replacing the procedure Is supplied with an argument

specifying where to send the result. The activator can then relinquish its computational

resources and vanish instead of waiting for the result holding computational resources

[He-76, Wa-78a]. A similar scheme can be used in our event model which therefore shares

the same advantage over the procedure based model. The price paid foi this early release

of computational resources (in a message passing model or in the event model) is that the

state of the computation must be passed to the continuation, e.g., by including it as

additional arguments to the program unit replacing the procedure (which then passes it to

the continuation).

1.6 Our Main Contributions

The fundamental characteristic or our event model is the ability of an Instance of

a program unit (an instance of an event handier) to unilaterally broadcast messages (cause

events) without specifying their targets. The receivers (event handlers) autonomously

idecide whether they are interested in the messages or not. The receivers can remove from

the ether, which encloses all program units, one or more messages In an atomic action.

In our event model, the primitive objects (event objects or messages) are not

mutable objects since once a message Is broadcast to the ether it cannot be modified. If It
Sr

Is a temporary message, it can only be deleted and totally forgotten; thus, it is not viewed

".

r .. ~ . -'-

Section 1.6 -22- Our Main Contributions

as a mutable object. There are, however, unique ways to model mutable objects in EBL; the

effect of mutable objects can be achieved due to:

1. The ability to broadcast permanent messages belonging to specific classes

(couse multi-use events), and to read the latest message from a class.

2. The ability of program units to remove messages from the ether (uncause or

forget single use events) and to broadcast new messages from the same

classes.

The language does not contain conventional constructs such as: variables,

assignment statements, iteration constructs, procedures, functions, and semaphores;

however, all these constructs can be easily modeled. The high expressive power of the

language is mainly due to our single-use events which are the work horse of the language.

The implementation schemes developed in this thesis are not conventional

Implementations of programming languages. The basic Implementation scheme associates an

event class manager with each event class, and an event handler manager with each event

handler in the program. The managers communicate with 9ach other and operate without any

centralized control.

Some of the problems encountered during the design of ths managers algorithms

are reminiscent of problems encountered In the implementation of a distributed database; in

particular, a distributed locking algorithm. Our locking aljorithm is a two phase algorithm in

which deadlocks are prevented. In contrast to many existing algorithms which prevent

deadlocks by defining a total order on all objects to be locked, our scheme only defines a

partial order on all object classes. The advantage of this scheme is that objects can be

r'- " P . .

Our Main Contributions - 23 - Section 1.6

locked by a requestor concurrently and not sequentially as in other algorithms.

Several optimization problems which are of general interest, e.g., optimal

distribution of objects in a network, have been defined and investigated. We have proved

that the optimization problems and even approximations to these optimizeinns are NP-hard,

and suggested heuristic algorithms.

Even though the data flow processor [De-77] supports highly parallel operation,

It was not designed to support communicating sequential processes. Several modifications

to the basic data flow processor have been suggested; these Increase the efficiency of

executing a program consisting of several processes on the data flow processor. An

Implementation of our language on the data flow processor adds to the processor the

capability of procedures and synchronization primitives such as semaphores.

1.7 Plan of the Thesis

The first chapter of this thesis describes cur event model and its relation to

* message passing models. Our approach to the language design and to the Implementation

has been described. Chapter 2 gives a quite detailed overview of the language. Chapter 3

Is Intended to give a deeper insight into the language. This is done by analyzing some of the

main properties of the language more thoroughly, and by comparison to other languages and

models. Chapter 4 completes the definition of the language. Chapter 6 deals with the

expressive power of the language. It shows how conventional language constructs can be

|° expressed In the language. Chapter 6 gives some classical examples which Illustrate the

ease of expressing various programs In the language. These examples lead to several

Interesting observations.

Section 1.7 - 24 - Plan of the Thesis

Chapter3 7-9 are devoted to strategies for Implementation of the language on

multiple processor systems. Chapter 7 investigates implementation schemes which are

natural to the language. A system with virtually unlimited computational resources Is

selected as a concrete example. This system allows us to abstract some of the limitations

posed by more restricted computer systems and thus to concentrate on the fundamental

problems. Chapter 8 investigates the problems imposed by more real processor networks.

The effects of limiting the number of available processors, dealing with a processor network

of a given configuration (not necessarily a complete graph), and limiting the number of

neighbors of each processor, are studied. Chapter 9 examines the possibility of

implementing the language on a data flow processor [De-77]. The data flow processor is

designed to achieve a highly parallel operation and is therefore a natural candidate for

Implementing our language.

Chapter 10 summarizes the thesis, presents our conclusions, and makes

suggestions for further research. Chapter 11 contains the references. Appendix A

contains a formal definition of the syntax. Appendix B contains performance evaluation of a

program on a processor network, and appendix C contains performance evaluation of a

program on a data flow processor.

Let L s give some suggestions related to reading of this dissertation. A reader

who is only Interested in the language can read chapters 2-6. Appendix A can be read

concurrently with chapter 4; it can also be used as a reference. A reader who Is primarily

a. interested in implementation issues has first to read chapter 2, and section 4.6.1; these

give sufficient background for understanding our implementation schemes. Chapter 7 should

be read by anyone who is interested in implementation schemes of the language. It Is

K.

Plan of the Thesis -25- Section 1.7

prerequisite for understanding chapter 9. Chapter 9 can be skipped by a reader who is not

familiar with the data flow processor. Chapter 8 can be read in two different ways: An

implementation oriented reader can read it and skip the proofs; he can view the chapter as

a continuation of chapter 7. A theorist, however, who is interested neither in the language

nor in the implementation schemes, can read chapter 8 without first reading any other

chapter of this thesis. Performance evaluation of EBL programs appears in appendixes B

and C. Appendix B can be read after reading chapter 8 (without the proofs of chapter 8).

Appendix C relies on appendix B and can be read after reading chapter 9.

Io

*h.

12

Section 2 - 26 - Overview of EBL

2. Overview of EBL

This chapter contains a somewhat detailed overview of the language. The main

features of the language are described here without the annoying little details.

2.1 Events and Event Classes

Event Is the main data type of EBL. Events are abstract entitles that are caused

during the course of the computation. An event is caused either internally and explicitly by

the program, or externally, when some hardware device causes It. (In order to avoid

cumbersome descriptions, in many places throughout the thesis the word event stands for

an occurred event.) An event object is created upon each occurrence of an event and

carries some Information about the nature of its occurrence. This information consists of

explicit values, in the form of event parameters, and implicit control Information. Every event

Is a member in some event class, denoted by an event class identifier; event class

Identifiers are declared. All events from an event class are of the same type, the type

associated with the corresponding event class identifier. The number of the parameters and

the types of corresponding parameters are Identical for all events from the same class.

An event parameter can be of a simple type (e.g., Int, bool, or char), or of event

type. The value associated with such parameter is either a value of a simple type, or an

event class Identifier. For example, if El is an event class Identifier, then E1(1) and E1(2)

are examples of possible events from class El. Events from another class, E2, can be

E2(El,3,true), and E2(E1,5,false). The parameters of the latter event are: the event class

Identifier El, the integer value 5, and the boolean value false.

" r-+ - - . . . - " - m .+ *

Events and Event Classes - 27 - Section 2.1

An event In EBL is either of a multi-use type (a multiuse event), or of a

single use type (a singleuse event). In the former case, Its occurrence is remembered

forever, i.e., the corresponding event object Is permanent. In the latter case, Its

occurrence can be forgotten at some stage of the computation, namely, the corresponding

event object is temporary. In both cases, the event object created upon the occurrence of

the event is an Immutable object. The main difference between the two types of events Is

In the number of direct effects that they can have. A direct effect of an event is the

activation of an instance of some program unit (to be defined shortly). A multi-use event

can have several direct effects, while a singleuse event can have at most one direct

effect, after which it Is forgotten. We say that an event exists when Its object exists.

An orthogonal property of events is their ability to recur. Events can be either

recurrent or non-recurrent. In the former case events can recur, in the sense that at any

point in time the conceptual list of event objects from the corresponding event class, the

event list, can contain identical objects. This list is therefore a collection In the sense of

[He-76]; I.e., a multiset. In the latter case events cannot recur, In the sense that trying to

cause an event while an Identical event is remembered has no effect. In this case, at any

point in time the conceptual list cannot contain Identical objects, and therefore corresponds

to a set. The term recurrent stems from the possibility of referring to several Identical

events as several Instances of the same event; however, the term event Instance will not

be used here.
I.

I:

Section 2.2 - 28 - Event Handlers

2.2 Event Handlers

A program unit in EBL is called event handler. An Instance of an event handler is

activated upon occurrences of events from certain event classes. The event handler

consists of two parts: the event handler heading, and the body. The event handler heading

contains several event descriptors each of which specifies an event class and contains

formal parameters (if the type of the event class contains parameters), and a where clause

which specifies a condition (a slightly extended conventional boolean expression) that has

to be satisfied for each activation of an instance of the event handler. A collection of

existing events that match the event handler heading, namely, the collection contains one

event for each event descriptor In the heading and the condition Is satisfied, may cause the

activation of an instance of the event handier.

The body of the event handier consists of two parts: the declaration part and the

script. The declaration part can only contain declarations of special identifiers of type tag

(defined in sectlon 2.3); event class identifiers can be declared only outside event

handlers. The script which defines the behavior of the event handier has a very limited

structure; It only contains a list of events to be caused. The following example of an event

handler shows two event descriptors in the event handler heading: suml (i: int, t1: tag), and

sum2(j: Int, t2: tag) corresponding to the event class identifiers sum1 and sum2

respectively; each contains two formal parameters. The heading also contains the

condition: i)J. The script specifies two events to be caused: one from the event class next,

|. and the other from the event class print.

1 2

Event Handlers - 29 - Section 2.2

on sum I i. int, tl tag) A sum2 (j: int. t2: tag) where i>j
seq-amuse

next (11);
print (i~j)

end ;

An instance of an event handier is activated at most once for every combination

of existing events that match the event handler heading. An event is considered "used"

after it is selected for such activation. if it is of a singleuse type it disappears after this

use and therefore cannot be used for additional activations (this is one of the reasons why

we said "at most once", and not just "once", at the beginning of this paragraph). If the

event Is of a multi use type, It Is not affected by its use. In order to avoid possible

ambiguities, the activation of an instance of an event handler (in particular, the selection of

the events, and the evaluation of the condition in the where clause) is defined as an atomic

action.

The same event class Identifier can appear in the headings of several event

handlers. Thus, if it is of a multi use type, an event from its class can activate instances

of several event handlers. This feature is discussed further In chapter 3.

The execution of the script of an event handler involves causing the events

specified In the script. These events may refer to parameters of the events that activated

this instance of the event handier by means of formal parameters In the heading (see I and j

In the example above). The actual parameters (which are expressions) of each event in

|. the script are evaluated and the event is caused (an event object is added to the

corresponding event list); this is the place where the actual computation takes place.

These events can be caused either sequentially or concurrently (in parallel) depending

Section 2.2 - 30 - Event Handlers

whether the body starts with the keyword seq_cause, or par-cause respectively; the

event handler is a sequential handler or a parallel handler respectively. For each activated

Instance of the event handier in the previous example, an event from class next Is caused

before an event from class print. If the event handier is transformed to a parallel handier

then these two events can be caused In any order or even concurrently.

Let us digress a little to examine why a sequential handier is needed (a parallel

handler simply allows expressing more parallelism). The ability to cause events sequentially

is Important. One may wish for example to cause several events after entering a critical

region and then (sequentially) cause an event indicating termination of the execution of the

critical region. In another example, one may wish to print the numbers 3 and 6 in this order.

Assuming printing a number is triggered by causing an appropriate event, two events must

be sequentially caused to achieve the desired effect.

Since the events caused by a parallel handier are not ordered, the only way (or

slight modification of which) to sequentially cause events without using a sequential

handler, is that each event In the sequence (except the last one) directly activates an

Instance of an event handler which (directly or Indirectly) causes the next event in the

sequence. Unfortunately, such a scheme does not work when the events in the sequence

are singleuse events. If they succeed to activate instances of the event handlers

needed to form the sequence, all but the last in the sequence cannot have any other direct

effect (by definition of a singleuse event); in particular, the effects originally expected

(e.g., printing 3). If any of them succeeds to have another direct effect, then the sequence

Is broken. Using a scheme in which the event handler whose instance should be activated

as a direct effect of an event In the sequence also causes (directly or indirectly) the next

r • -

Event Handlers -31 - Section 2.2

event In the sequence Is possible in some cases. However, such a scheme is too

cumbersome and may result in inefficient programs In many cases. Thus, the need to cause

a sequence of single use events Is the fundamental reason for the Inclusion of a

sequential handler In the language.

The condition in the where clause of the event handler heading contains a

conventional boolean expression that has access to the formal parameters of the event

descriptors in the heading. It is used to specify some conditions, or constraints on the

activating events. Special predicates for specifying additional constraints on the order in

which events are selected for activating instances of an event handler, can be used in the

where clause of an event handler; they are defined in chapter 4.

2.3 Tag Identifiers

The language also contains the simple type tag. Identifiers of type tag, tag

Identifiers, can be declared outside event handlers, or within event handlers (as local

Identifiers). The values associated with Identifiers of type tag are obtained from a set of

abstract unique values: o, A ...4, called the tag set. This is a global set in the sense that

*there is only one such set for the whole program. For each activation of an instance of an

event handler Its local tag Identifiers assume unique values from the tag set. Once a value

from the tag set is associated with a tag Identifier, It is deleted from the set and cannot be

associated with any other tag Identifier.

Tag Identifiers can be used to distinguish between the effects of different

Instances of event handlers. This can be done by tagging an event, namely, attaching to It
,se

f a parameter of type tag. This feature has an important use when trying to join sevcral

Section 2.3 - 32 - Tag Identifier*

events belonging to the same logical computation and activate an event handler. It can be

done simply by specifying in the where clause of the corresponding event handler that they

all have the same tag (see example In Figure 2.1).

2.4 Type Identifiers

The language Is strongly typed; each Identifier In the program must be declared

as being of some type. In order to make life easier for the programmer, the definition of

type identifiers is allowed. A type Identifier can serve as a synonym or a shorthand

notation for an explicitly written type, or type list. For example,

cont -- single_use recurrent event (int, tag);

defines cont as a type identifier (not as an event class identifier), and

record :: int, Int, bool

defines record as an identifier equivalent to a list of three simple types.

The ability to define type Identifiers might seem Just a syntactic sugar; however,

as shown in the next section, this concept Is needed for defining abstract data types and

therefore has an Important semantic role.

2.6 Modules

After the properties of events and the program units they activate have been

described, the way a program Is structured will be explained. First, event handlers cannot

contain local event class identifiers or other event handlers. However, the module is a

mechanism In the language allowing the use of local Identifiers.

2.

Modules - 33 - Section 2.5

The module is similar to that of MODULA [Wi-77b]. This construct Is a block

having two special lists at its beginning (the module interface): the import list, and the

export list. The Import list is a list of Identifiers declared outside the module that should be

known inside the module. Similarly, the export list is a list of Identifiers declared inside the

module that should be accessible outside the module. Thus, the module allows the user to

have some control on the scope of identifiers. A module can contain other modules or event

handlers; however, event handlers cannot contain other event handlers or modules (their

only local identifiers are the formal parameters and the tag identifiers).

The module provides some protection for event class identifiers. if an event

class identifier is declared in some module, the only event handler headings in which it can

explicitly appear are of handlers contained in this module or In Inner modules that import the

event class identifier. Only such handlers can use events from this class. However, all event

handlers whose script is In the scope of that event class identifier, in particular, handlers

out of the above module that know about the event class identifier via the exporting -

importing mechanism, can explicitly cause events from its class.

An important property of the module is that when a type identifier is exported,

only its name is known outside the module. The structure of the denoted type Is not known

outside the module and therefore event handlers outside the module cannot refer to

components of an object from that type. If such a type is used as the type of a parameter

of an event in some event class then only handlers within the exporting module can actually

break such a parameter Into Its constituent basic type components and do some

computations on them. Formal parameters outside the module can be bound to objects of

such exported type; they can be Inserted as parameters in newly caused events (i.e., be

r

- J - II. .2' ~ , a a ° !

Section 2.5 - 34 - Modules

copied or passed on); such formal parameters can be compared to one another If they are

of the same exported type; but they cannot be operated on outside the module in other

ways. Thus, the module allows creating abstract data types, and encapsulated program

units.

The module serves as an Interface between the surrounding environment and Its

Inner environment. However, in contrast to the event handler, the module has no dynamic

effect; Its only effects are the establishing of rules for scope and use of Identifiers. The

modules In a program are visible to the compiler, but they have no effect at run time. Their

role Is different from the blocks of ALGOL which have both static (local identifiers) and

dynamic roles.

2.6 Programs

A program is a collection of declarations (of event class identifiers and tag

Identifiers), of type definitions, of event handlers, and of modules (that can contain

declarations, type definitions, event handlers, and modules, etc.). The execution of a

program starts by the system that causes an event from the class program start. This can

activate one or more instances of event handlers, that can cause other events, etc. All

those activities take place concurrently. At any point In time there are some active

Instances of event handlers causing events, and there are conceptual lists of all existing

events from each event class. The program Is terminated at a point In time at which the

a computation cannot proceed and will not be able to proceed later; i.e., the following

conditions are satisfied:

1. There are no active Instances of any event handler.

1,

Programs - 36 - Section 2.6

2. No instance of an event handier can be activated (no matching event

collections).

3. No spontaneously caused future system events (defined in section 2.8) will be

able to activate any instance of an event handler.

4. No event of a class denoted by an event class Identifier explicitly declared In

the program (as opposed to a system event) can (or will) be caused by the

system. Normally, if an event class Identifier E Is used as a parameter of a
9 .

system event, events from class E can be caused by the system (as opposed to

causing by an Instance of an event handler).

2.7 Event Relations

Various partial orderings on events and event relations have been defined in

[Gr-75] and [He-77], and many of the observations in this section rely on them. Each event

handler H defines a strict partial temporal ordering on the events that activate an Instance

of H and those caused by that instance of H. The following two relations between events:

the causality relation -- c-> , and the precedes relation -- p-> , give a better description of

the order in which the different activities in a program take place. Fo, a parallel handler:

on Pl(...)A ... A Pn(...) where B

par_cause
S 1 (...)

Sm(...)
end;

!. let Pl' '" , Pn be a collection of events that activates an Instance of the above event

handler, and let s, ... p am be the events specified in the script for this Instance of the

event handler; then for each SJk caused by this Instance of the event handler (remember

•

Section 2.7 - 36 - Event Relations

that while a non recurrent event exists an iJentical event cannot be caused), the

following relations hold:

Pi --c-> Sjk for all 1 I S n.

For a sequential handier:

on P(...) A... A Pn(...) where B

seq cause
S((...)

S, m...)

end;

let P1 , "'" Pn be a collection of events that act. tates an instance of the above event

handler, and let s1, ... sm be the events specified in the script for this Instance of the

event handler. Let sjl be the first event in the latter list caused by this Instance of the

event handler, sJ2 the second, etc. and the last one sJq where jq & m; then the following

relations hold:

Pi -c'>sJk for all 1i<n, and for all 1 < k_<q,

ajk --p-> sJk+1 for all 1 _ k (q-1.

Another rule which holds for any pair of events p and s is:

p --c->s p--p->s

This rule reflects the physical fact that if one event causes another one, then the second

event must have been preceded by the first event. The above rules together with the

following properties of the relations, completely define the relations: both -- c-> and -- p->

are nonreflexive transitive relations.

By applying the above rules, one can determine the strict partial temporal

ordering between the events that activate an instance of an event handler and those

caused by it; this ordering is simply equal to that obtained by the precedes relation. In

"1"

Event Relations - 37- Section 2.7

general however, a strict partial ordering among all events caused by a program cannot be

determined even if they are known. The reason is the nondeterministic nature of our model:

the semantics of the language does not define the order of (or the algorithm for) choosing

the next event handler to be activated. In cases of event class Identifiers of a single use

type appearing in more than one event handler, an arbitrary choice is made and this Implies

that several strict partial orderings on the events caused by the program are possible. For

example, consider the following program:

El, E2, E3: single use recurrent event;

on program start
seqcause El

end ;

on El
seqcause E2 ;E3

end;

on El
seqcause E3 ; E2

end ;

In this program, one event is caused from each of the classes El, E2, and E3; let el, e2,

and e3 be these events respectively. One cannot determine whether e2 precedes e3 or

e3 precedes e2 even though the fact that both occur is known. Simply saying that e2 and

e3 are not ordered is not correct since this allows the possibility that they are caused in

parallel. However, events caused by an Instance of a sequential handler cannot be caused

in parallel; they must be ordered by the precedes relation. Thus, two strict partial orderings

are possible in this example.

I.
Frequently, In specifying the behavior of a program or a subprogram, the

occurrence order of some collection of events (e.g., all events in a certain event class) is

'I.

1' _ "~

Section 2.7 - 38 - Event Relations

referred to. This order reflects the total temporal ordering on the events under discussion. It

Is consistent with the transitive closure of the precedes relation defined above.

2.8 System Events

So far no way of interacting with the external world has been described. In fact,

the language does not contain specific constructs for this aim. In each Implementation of

the language, some system event class identifiers will be defined for interacting with the

standard I/0 devices, with the special devices to be controlied, and on general with the

operating system. The following is an example of a system event class Identifier:

print: single_use recurrent event (Int)

The semantics of such system event class Identifier can be that the system prints the

parameters of all events from the class print, according to their occurrence order.

2.9 Example

Figure 2.1 contains an example that Iliustrates some of the features of the

language. The purpose of the example is not to demonstrate how programming In EBL is

convenient, but rather, to Incorporate many of the language features In one example.

Examples demonstrating the ease of expressing various programs are given in chapter 6.

The example describns a subprogram for computing concurrently factorial(i) and '.Ztorial(j).

When both results are ready their sum Is printed. This subprogram can be activated

concurrently any number of times. The subprogram consists of two modules: one for

computing factorial in an Iterative manner, and another that uses the first one and prints the

desired result; It is activated by causing an event of the form: sumf(l, j). We assume that

the system event class identifier print, described earlier, exists In the Implementation of the

Example - 39 - Section 2.9

language. Note that the braces {...) are used to indicate the beginning and the end of a

comment.

cont = singleuse recurrent event (int, tag) ; (type definition)

module (factorial sun }
export: sum f;
Import: cont, print;
sumf: singleuse recurrent event (Int, Int)
sum1, sum2: cont;

module (factorial)
'V export: F; (F can only be caused outside the module)

import: cont; (the structure of cont is known here)
F: singleuse recurrent event (int, int, cont, tag) ; (declaration)

on F (n, p: int, c: cant, t: tag) where n<=1
par_cause c(p, t) (cause the continuation event)

end;

on F (n, p: int, c: cont, t: tag) where n>1
par_cause F (n-1, n~p, c, t) (iterate)

end;
end; (of factorial module)

on sum f (i, J: int) (when factorial sum Is requested)
t: tag ;
parcause (activate the factorial module twice with same tag)

F (i, 1, sum1, t) ; F (j, 1, sum2, t) (concurrently)
end;

{ when two matching results of factorial arrive print aum)
on sum (i: int, t1: tag) A sum2 (j: int, t2: tag) whera tl=t2

parcause print (i+j)
end;

end; { of factorial sum module)

Figure 2.1 Factorial sum

Several observations can be made about the example in Figure 2.1:

1. The loop is implemented by causing F within one of the event handlers activated

by F. This is reminiscent of a recursive procedure call; nevertheless, no state of

['1

- r_ . 2 , ,.

Section 2.9 -40 - Example

the computation needs to be saved as a result of this Inner cause; the analogy to

tail recursion is appropriate.

2. Tags are used to join results of matching subcomputations.

3. Note the modularity of the program. F can be caused outside the inner module in

which it has been declared but it cannot be used (in the sense of section 2.2)

there. F is unknown outside the outer module since it does not appear in the

export list of that module.

4. The factorial module is used In a modular manner. In order to Invoke the

computation of factorial(n) one has simply to cause an event of the form

F(n,l,C,t) and to wait for the result event In another event handier. The result

event has the form C(r,t) where r=factorial(n) If nO, else 1. One does not have

to know how the factorial module Is Implemented.

5. sum1 and sum2 are used as continuations.

6. The type Identifier cont Is known in both modules since It has been Imported

appropriately. Its structural details are also known In both modules since they

are Inner modules in the environment In which cont has been defined.

Suppose the two events, sum_f(1,3) and sumf(2,1), are caused sequentially.

The corresponding strict partial temporal ordering between the caused events Is depicted in

Figure 2.2 (sinmilar drawings appear in [He-77]). From the graph in Figure 2.2 It can be seen

how four activities take place concurrently, and how the results of related activities are

joined. Unordered events (e.g., print(3) and print(7)) can occur in any order or concurrently.

'Ib

I,

Example - 41 - Section 2.9
sumf(1,3)

sum f(2,1)-- te.f(2,1) F(3,1,sum2P)
F(1,1 ,sum1.8)

F(2,1 ,suml) I F(2,3,sum2jS)
~F(1,1,sum2,a)

F(1,2,suml ,) sum 1(1,0) F(1,,asum2j)

Ssum2(1,) sum2(6.8)
sumi1 (2,.) 1~

print(3) p int(7)

Figure 2.2 Events ordering

2.10 Fairness

In order to analyze or prove (even Informally) properties of a program written In

some conventional sequential programming language one normally makes an Implicit positive

speed assumption. In a statement oriented language the assumption is that statements are

executed in a positive speed. More generally, the assumption is that if a point in the

sequence of steps executed by a program is reached, then the next step will eventually be

executed (if its execution is permitted by the program). More specific assumptions can be

made if more Information is known about the implementation; but such information is not

provided by the definition of a language.

in a language for parallel programming the notion of a sequence of steps is not

directly applicable. However, assumptions which are analogous to tne positive speed

assumption should also be made for analyzing or proving properties of programs. In a

process based model each process Is generally viewed as a sequence of steps. The

corresponding assumption Is that each process is executed In a positive speed. In addition

I,•

Section 2.10 -42- Fairness

to the nondeterminism which is Inherent to languages for parallel programming, the

corresponding models can also be nondeterminate. In such cases, It may be more difficult to

express the analogue to the positive speed assumption. Our model belongs to this latter

category.

This discussion leads to the problem of fairness of an Implementation of a

language. If a language definition does not contain some fairness rules which must be met

by every Implementation of the language one may not be able to analyze or prove properties

of a program which are Implementation Independent. In general, only weak fairness rules

should be Included in a language definition In order not to constrain too much

Implementations of the language. An example of a weak fairness rule Is: If a computational

activity can proceed it eventually proceeds.

Definitions of most existing languages do not include fairness rules; although

limited rules for several constructs may exist. As an example, suppose one writes a

program In which two processes P1 P2 are activated. Each process consists of a

nonterminating loop. In each cycle process P, prints some number on printer I. If such a

program is written in languages such as: PL/1, CONCURRENT PASCAL [BH-75], MODULA

[Wi-77b], or communicating sequential processes [Ho-78a]; nothing guarantees the

programmer that process PI (P2) will print even one number. Our language defers from

other languages In that fairness rules are part of Its definition. Using these rules one can

easily show that Infinitely many numbers are printed on each printer. Act1 [He-79]

manifests a similar property by its guarantee of service.

, - --

Fairness -43- Section 2.10

This section gives some rules about the way a computation proceeds in our

model. These ruies are quite relaxed in order not to constrain too much implementations of

the language. The rules try to guarantee two separate requirements. First, that the

computation will eventually proceed of possible. Second, that some fairness is provided.

Formal treatment of the fairness problem, based on temporal logic, appears in [Pn-79]. It is

true that the language contains predicates which allow the user to have some explicit

control over the fairness of the execution. However, in our opinion the language should

guarantee at least a minimal fairness even if the user does not use the predicates.

Fairness Is normally discussed in the context of concurrent processes competing for

resources. Our model is different from a process based model therefore the notion of

fairness is different in the context of EBL. The fairness rules discussed later In this section

explicate our notion of fairness.

One must observe that the fairness rules do not rule out the possibility of

starvation from every program. Suppose, for example, the heading of event handier H is:

on El A E2

where E1 and E2 are single-use event class identifiers that also appear in the event

descriptor lists of other event handlers. The fairness rules do not rule out the possibility

that no instance of H will ever be activated even though infinitely many times a pair of

events (one from each of the event classes E1 and E2) exists. The fairness rules

guarantee, however, that the scheme for expressing a P operation on a semaphore variable

(see chapter 5) is fair (in the sense that if enough V operations are executed then every P

operation eventually terminates).

r' -

Section 2.10 -44- Fairness

The first fairness rule is:

FO. Once an instance of an event handier Is activated, execution of its script

eventually terminates.

In fact, FO should be conditioned on availability of enough computational resources. We shall

assume that such qualifications are added to all our fairness rules. The motivation for FO is

that causing each event in the script of an event handier can be executed in finite time,

and the number of events specified by the script of an event handier Is fixed. Thus, the

execution of the script can be completed in finite time.

FO Is not sufficient since an implementation of the language may choose not to

activate any event handler Instance at all. Such an implementation does not violate FO but

Is certainly unacceptable. Before presenting the next rules we define several conditions

which may be satisfied by a program. These conditions are then used in the rules

themselves.

Let ei be an event from class E, which exists at time to. Let H be an event

handler. Assume C is a clock ticking at some fixed positive finite rate; the time Interval

defined by two adjacent ticks is the clock's period. The various conditions and rules are

defined next.

C1. If e t Is not used at any time t)to, then infinitely many periods following to contain

points In time at which e i can be a member of at least one event collection which

, could activate an instance of some event handler.

C2. EI Is of a multi-use type. If ei Is not used by instances of H at any time tato,

then Infinitely many periods following to contain points in time at which e, can be

a member of at least one event collection which could activate an instance of H.

i a

Fakrnes -46- Section 2.10

C3. The event descriptor list of H contain Only imuliMue event clas Identfiers;

there areom event descriptors, and the conresponiftg event class kIdtrsm are

E 1 . --. Em- *c(*a. --- ea) Is an event collection associated with the above

event class uleitifle-s. If ecdoes n~ot activate an istance of H at any time Qto

then Infinitely many periods following to contain points In time at which e. could

activate an instance of KL

Several fairness rules can be defined based on the previous conditions.

Fl1. For all ep, to Nf condition Cl Iis satisfied then eventually e1 Is used at time tkto.

Rule Fl guarantees that processing of a request (represented by ej) which can be handled

by one event handier or by several event handlers eventually begins.

F2. For all el, H, to if condition C2 Is satisfied then eventually ej is used by an

instance of H at time Vt0 .

Rule F2 guarantees that a message (represented by e,) broadcast to several event

handlers Is eventually received by aNl of diem.

F3. For al ec~fe1 -. em). H. t If condition C3 Is satfied then eventually e.

activates an instance of H at time tQto.

Let EP() be a collection of existing events from event class Ejat time t for Izz1, m,in

Suppose One wants to Perform Some computation on each eledsent e c in the wateslan

Product E(t)=E ItM X ... x Em(t) which Is built as time progresses. Rule F3 guarantees that if

ecoE(to) then the computation corresponding to ec eventually begins (Possibly before to).

In other words. F3 guarantees that conduits [Wa-78a] can be correctly impleamned in EBt.

(without using EBL's predicates).

Section 2.10 -46- Fairness

All the fairness rules have the form: if some condition Is satisfied then eventually

S (something) occurs. This Is a very relaxed form and an Implementation of the language

should try not to delay unreasonably the occurrence of S. However, we do not Include the

additional requirement in the definition of the language.

2.11 Swnmary

An overview of EBL has been presented In this chapter. The language is based on

events which provide the only control mechanism. Events are explicitly caused by the

program and they activate Instances of (dynamic) program units called event handlers. The

only operation that can be performed by an instance of an event handler Is the causing of

new events (which can activate more instances of event handlers). Many event handler

instances can be executed concurrently. In contrast to event handlers, modules have only

static effects; they have no effect at run time. Several fairness rules are part of the

language definition; they must be met by every Implementation of EBL.

A deeper insight Into the language Is given In chapter 3. The definition of the

language Is completed in chapter 4.

I.

1.

, -

Relation to Other Mechanisms - 47 - Section 3

3. Relation to Other Mechanisms

The purpose of this chapter is to give a deeper insight into the language before

diving in the next chapter Into the detailed definition of the language. It starts with a

comparison of certain features of our event model with other models (process based models,

and message passing models); continues with an analysis of different kinds of modularity in

the language; discusses possibilitleb for parallelism in the language; proceeds with a

discussion of synchronization capabilities In the language; and then shows the relation

between the language and some other models of computation.

3.1 Relation to Other Models

This section examines why event semantics seem promising as the underlying

basis for a parallel programming ianguage for distributed systems. This is done by

comparison to other models: message passing models such as the Actor model [He-76] and

the mu calculus [Ha-78, Wa-78a], MODULA [Wi-77b] an example of a process based model,

and procedure based models such as ALGOL [Na-63].

The message passing models and tie event model on one hand, and MODULA on

the other hand, are all Intended to allow expressing concurrent computations. In the first

cases, each activity can unilaterally spawn new activities, thus forming a multilevel tree of

concurrent activities. In the latter case, the computation Is restricte I to cooperating

sequential processes, only one of which (the main program) can create new processes. In

I. order to achieve a multilevel tree of concurrent activities, whenever a secondary process

(not the main program) wishes to create a subprocess it has Lo request It from the main

program. The communication with the main program Is needed In general since a process

'I

r - -

Section 3.1 - 48 - Relation to Other Models

decision to spawn new subprocesses may be data dependent. Observe, however, that the

above limitation of MODULA is not Inherent to every process based model; PL/1 for example,

does not suffer from such limitations.

The disadvantages in the case of MODULA are additional communication overhead,

and the bottleneck created by the need to communicate with one process. For example,

the time required to Initiate N=2n-2 activities, whose causality relation has the form of a

constant depth (n-i) rooted complete binary tree, can be proportional to the height of the

tree n-1 (i.e., O(log N)) in the case of the message passing models and the event model

(assuming at least N free processors), but must be at least proportional to the number of

nodes in the tree (except the root) 2 n- 2 (i.e., O(N)) in the case of MODULA. Thus, the

event model shares an advantage with the message passing models over MODULA in that

they both allow spawning of new activities at a higher rate, therefore expressing a higher

degree of concurrency within a computation.

Let us describe the basic computational steps of several models in message

passing terms. In a procedure based model, a procedure call involves the activation of a

procedure and the subsequent return of a value. This can be viewed as passing a message

from the activator to the procedure, followed by passing a message Tron the procedure to

the activator. In this case, the basic computational step consists of two interactions, each

Involving two instances of program units. In a message passing model the basic

computational step is simpler; It only includes the passin g of a message from one instance of

a program unit to another one. Here, there Is one Interaction between two instances of

program units. In our event model, the basic computational step is even simpler; it only

includes the sending of the message. Here, only one Instance of a program unit Is involved

Relation to Other Models - 49 - Section 3.1

and the interaction is between it and the ether (or between it and the system).

Let us examine how a computation consisting of several nested subcomputations

(at levels 1, ... n) progresses In several models. In a procedure based model, the

computation terminates when all the subcomputations at levels 1, ... , n terminate. In a

message passing model, starting a subcomputation corresponds to passing a message to an

Instance of a program unit. The passing of the original message causes passing of

messages activating the subcomputations of level 1. The processing of the original message

terminates (conceptually) when the messages activating the subcomputations of level 1 are

received by their targets (and not when all the nested messages are processed).

In the event model, starting a subcomputation is achieved by causing an event.

In the processing of the original event, new events for activating the subcomputations of

level 1 are caused. The processing of the original event terminates when the messages

activating the subcomputations of level 1 are sent (broadcast); i.e., possibly prior to the

association of messages with their receivers.

Thus, in the event model an instance of a program unit can vanish, relinquishing

computational resources, as soon as Its messages are sent and before the possible

receivers observe them. The price for this early release of computational resources in the

event model is paid by the receivers which have to check whether they are Interested In

the messages or not. The semantics of our language restricts the required checking (by the

use of event classes): a program unit need not check all messages but only those from

certain classes.

or

Section 3.1 - 60 - Relation to Other Models

Suppose one wants to perform some computation on each element in the

cartesian product S1 x ... x Sk" Further, suppose each element of Si is represented by a

message (event) in the class associated with Si. In our model, an Instance of a program unit

can specify that any collection of k messages (events), each from a specific class,

activates an instance of the program unit. If n messages are broadcast from each of the k

classes, totally k'n messages, nk instances of the program unit are activated, one for each

combination of k messages from those classes. hi thie Actor model, each message

activates one instance of a program un!t, thus in order to achiave the same effect at least

nk messages are needed. In addition to the higher number of required messages, the

programmer has to explicitly write an appropriate algorithm in the Actor model, In contrast to

our model. The conduits of the mu calculus [Wa-78a] allow expressing the above behavior

easily; however, the number of messages sent is at least k*n+nk. (Equality can be reached

by extending the conduit construct to handle k classes of messages, and not only two

classes as defined In [Wa-78a].) Note that the smaller number of messages required In our

model to activate nk Instances of thts program unit is only a matter of level of abstraction.

At a lower level of abstraction (the language implementation level) some signal is needed to

trigger the activation of each instance of the program unit.

The ability of an event object to carry event class idenlifiers as parameters

provides for a special programming style which has lately become popular, the use of

continuations [St-74, He-76, Ha-78, Wa-78a]. An event handler can be passed a

parameter which specifies what to cause when done, namely, instances of which event

handlers to activate next. Continuations are used in several places in this thesis; some of

them are: the factorial module in the example in chapter 2, the implementation scheme for

It

Relation to Other Models - 51 - Section 3.1

procedures (see chapter 5), and the airline reservation system (see chapter 6).

Various message passing schemes can be built on top of EBL. The fact that an

event has parameters associated with it allows it to behave as a message carrier; in

addition to the activation of some processes, the event delivers them the carried message.

By using multi-use events, broadcast modes can be implemented, since causing an event

actually broadcasts some message, the event object, "To Whom It May Concern".

The event model allows broadcasting a message that can be received by any

(one) program unit which finds it interesting out of a group of n program units; leaving the

task of selecting the program unit to the system, when more than one program unit is

Interested in the message. In order to achieve the same effect in the Actor model the

programmer has to devise an appropriate algorithm. The same algorithm to be used for the

implementation of our language can be employed for this purpose. The Identity of the n

program units must be known to the algorithm In case of the Actor model, whereas no such

requirement exists in our model.

The ability of an instance of a program unit in the event model to broadcast a

message to several program units has no analogue in the Actor model or in the mu calculus.

So is the ability to broadcast a message without knowing what program units will receive it,

how many instances of program units will receive it, and when will it be received. As a

special case, the event model allows passing a message to one instance of a program unit,

as is done in the above models. Pattern directed invocation languages such as ETHER

[Ko-79] manifest such capabilities; the relation to our model is investigated in section 3.7.

1

SEO 3-1 -52- MOMNSt OeMo loom

11hR FMOWCMu PWC~p disam"SmOjt dilffee IM She e m

les theM wm s. ON fte Meesmioe posu (UV am exe5k OfUebwN

W161 eff*MwAmdi Ase lim she ewlrt ie omm t e '*: (iesw HvIuM its

atsed im *ve wasae passa voiei (except fr ET4.i 4=l-791~ Tom at cus asms

Mudf thke eveNf -1, an)M The swe kinds elf mes affd fthe sam caebmes Ikir

aui avsai as~ the wassme psmg nideft

3.2 MwIef cbjwch

Imflcgfl9OI tr arfti I.E theeffc ad wmi~be (object (or CAUMI* swfi

dsef) ~SO meft 4D =or i* a hwgauw 'muft io mwh oe Pm - Sw*zh a

caUabty is eeciuf emwtast Fu a Moruppee I h vaodi. gamm labeecmar

gl acmhiftes ame 10ylowicailt swafteei. NYIDMrbrMiU, awd jomD. Onee wy wow

hat Sife effects CM be uWmzi~dkeigm &"caw lnisnuIsi V-4- bm Owhe -iswb taCMm A~

ce be byposson tie '-currevw wItaWI4 off 41e Owmc lUK* in, ove system ft Owey

Owdi e~resuiaike -763- ftww suhe a p mMa Stie ii uMeeiURit and f

iw~fivmwatwm am a 4asllrbied sy)steme is bound U~ be ififtmC

We Clo fg s flzr at~ewmg The TIPe~ cof 'Murale cbjer-li --am be dUSSI'Ed a

~rwI - ' Micus' and adutj~ 4FiiNOSW&. "~ tam 'Ywivew ca, iuedwyin wheIII

go - ihs' p~rweeiw3f gesfm'oys wmee 'r aO Nw mainM abfi~t s pewmn u I -a~ 'i "e

=w wodWiffy the stt lo am iobJsct =#y mad mew wdw e~t 20 Oe OfthrUM~

fts prVMIGWS SIW IiA., miW%%rTWImm is MOVW% Io2 (e4.. A fstI on A***~h the MOiY &fW~

cpertv awe aplad aid ra elsumeiv t, or ev'e trzowi Ie-77a]D. fle e

Mutable Objects -53- Section 3.2

mechanism (for this purpose) in prograniming languages is the use of variables and

assignment statement; this is obviously a destructive mechanism. A similar concept in the

context of message passing is the cell [Gr-75] which is used in the Actor model; this is also

a destructive mechanism. As was pointed out in [Ha-78], the use of cells should be avoided

whenever possible since it complicates the semantics of a language. Cells, however, (and

destructive mechanisms, in general) save space by destroying past information. The mu

calculus incorporates the conduit construct [Wa-78a) which only allows a confined kind of

mutability. It is a compromise between allowing and forbidding the use of mutable objects;

this is an additive mechanism.

In EBL there are no mutable objects; therefore, In light of the above discussion,

this could limit the expressive power of the language. However, the effect of mutable

objects ca.a be achieved due to:

1. The ability to create permanent objects belonging to specific classes (cause

multiuse events), and to read the latest object from an event class; this is an

additive mechanism. This approach is pursued in the readers writers example in

chapter 6.

2. The ability of a program unit to delete several temporary objects belonging to

specific classes (use single_use events), and to create new objects from the

same classes; this is a destructive mechanism. This approach is pursued In

chapter 5. This ability adds to the expressive power of the language but also

I. complicates its semantics.

I,

.. . - - -l ~ l ll l k l . . :...- -

Section 3.3 - 54 - Modularity Issues

3.3 Modularity Issues

Modularity is manifested In several forms in the language; we use the same name

In discussing all of them. The first source of modularity stems from the semantics of

modules. The mechanism of exporting - impcrting of Identifiers provides for hiding and

sharing of identifiers between program units in a controlled way. For example, in Figure 2.1

F is known In both modules but not outside the outer module. Modules protect event class

Identifiers against undesired uses (in the sense of section 2.2). This protection is

especially important in the case of singleuse events, which may vanish if an unauthorized

event handler uses them. For example, in Figure 2.1 F Is protected 'hy the factorial module;

similarly, sum f Is protected by the factorial sum module.

Modules allow creating encapsulated program units and abstract data types. One

can write a module, specify its behavior in terms of the relation between events it uses and

events It causes, and then use It without paying attention to the way it is implemented; i.e.,

In a bottom up manner. For example, in Figure 2.1 one can begin by writing the factorial

module. The behavior of this module can be specified as follows: Each event of the form

F(n,l,C,t) causes an event of the form C(r,t) where r=factorial(n) If nO, else 1. When this

module is then used one does not have to know whether factorial is computed Iteratively,

recursively, or by table lookup. Similarly, the behavior of the factorial sum module can be

specified as follows: each event of the form sum f(i,j) causes an event of the form print(k);

kufactorial(i)+factorial(J) where factorlal(n) Is 1 if n(O.

I.
The above properties of modules are also resirable tor a top down design of a

program. Like in other languages, a program can be designed by step-wise refinements

r --

Modularity Issues - 65 - Section 3.3

[Di-72]. At each step a module contains only trivial eve-it handlers that activate inner, still

non-existing, event handlers and returns (causes) the correct result events when the inner

event handlers return (cause) their result events. The next refinement consists of defining

Inner modules, in which inner event handlers implement the desired behavior of the previous

step, again to a certain level of abstraction. This process continues until the Innermost

event handlers which actually perform the necessary computation are written.

As an example consider the factorial sum problem of chapter 2. Suppose the

activating event Is sumfact (instead of sumf). In the first step, the program can consist

of the following module:

module
export: sum-fact;
Import: print ;
sum-fact: event (int, int)
sumready: event (Int);

on sumfact (i, j: int)
par cause sumf (i, J)

end ;

on sum_ready (i: int)
par cause print (i)

end;
end ;

In the second refinement the subprogram of Figure 2.1 except the factorial module can be

added within the above module; print(i+j) is replaced by sum_ready(l+j), and sum-ready is

added to the import list. The last refinement involves writing the factorial module within the

factorial sum module.I.

If programs are written in the way described above the intermediate steps need

h "not be deleted from the program at each refinement step; they can remain there. A clever

I

'4 - -

Section 3.3 - 56 - Modularity issues

ccmpiler can eliminate from the program the causing of intermediate events which constitute

the hand-shaking between event handlers of nested modules, and thus the efficiency of a

program is not affected by the top down design. An obvious advantage of this approach Is

that all the design steps remain in the final program text. The text may be longer than the

one obtained if intermediate steps are deleted. However, the program is easier to

understand and maintain since It is hierarchically built.

Another kind of modularity Is provided by the language (a similar property is

described In [Ko-76]). It stems from several reasons. First, the order of event handlers or

modules within the module containing them, or within the program (if they are not contained

in any module), has no effect on the meaning of the program. Second, an event class

Identifier can appear in the headings of more than one event handler. If an event from such

an event class is of a single use type it activates at most one event handler instance; if it

Is of a multi use type it may activate instances of more than one event handler. Thus, the

algorithm for handling an event can be distributed in the program text. This feature can be

useful, as discussed next.

A real time program for controlling a physical system, such as a car, can be

constructed as a collection of modules that reflects the structure of the physical system;

each program module will correspond to some physical module. Thus, a program for

controlling a car may contain program modules that correspond to the ignition, the oil, the

brake subsystems, etc. Each such program module encapsulates all the necessary

operations related to the corresponding physical module. An external event of the physical

system that Influences several physical modules, will have several associated event

handlers distributed In the corresponding program modules. Similarly, a regular program

1 ---"b .. . o 4

I,

,a-

Modularity Issues - 57 - Section 3.3

event can activate several e'tent handlers distributed In the program. For, example, an

event from the class check can Initiate checks In the program modules that correspond to

the ignition, the oil, the brake subsystems, etc. On replacement of one of the physical

modules, only the corresponding program module has to be modified.

3.4 Parallelism in the Language

Parallelism In an EBL program Is manifested at several levels. At the top level,

several instances of event handlers can bc- executed concurrently; each car. cause new

events which activate more Instances of event handlers. A previous section demonstrates

that the rate of spawning new activities in this manner is high, e.g., in comparison with

MODULA. At a lower level, when an instance of a parallel hanCer is activated the events

specified In Its script can be caused concurrently. Parallelism at the above two levels Is

explicit in the language definition. The followlne analysis shows that a great deal of

parallelism can be exploited at a lower level; this applies not only to a parallel handler but

also to a sequential handler.

Once an Instance of an event handler is activated, all the data needed for

evaluating the parameters of the events it causes are available. In fact, the value of each

parameter is a function of the formal parameters In the event handler heading and of some

Identifiers (event class Identifiers, and tag identifiers). The values associated with the

Identifiers in an expression defining a parameter of an event to be cau.3ed are fixed and

|° cannot be modified during the whole computation. Furthermore, evaluating those functions

causes no side effects. Therefore, when an instance of an event handler Is activated all

event parameters In its script can be evaluated In any order or concurrently (for both types

Iahw-
r

Section 3.4 - 68 - Parallelism In the Language

of event handlers).

Earlier It was argued that the difference between a sequential handler and a

parallel handler is that the events caused by an Instance of a sequential handler are

ordered by the precedes relatior, whereas those caused by a parallel handler are not. The

above discussion shows that the difference Is basically In the order in which the event

objects containing the computed parameters are Inserted into the conceptual event lists. In

the former case these Insertions are ordercd whereas in the latter case they are not.

Another consequence of the previous discussion is that once an Instance of an event

handler is activated its script can be executed in a finite time. All the data needed for the

execution are available; therefore, there Is no a priori need to suspend It during the

execution.

3.5 Synchronization Capabilities

This section contains a comparison of synchronization capabilities In EBL with

other mechanisms such as semaphores and monitors. As is shown In chapter 6, general

semaphore variables [Di-68a, Oi-68b] can be implemented as ev-nt class identifiers of a

singleuse recurrent type. (For achieving mutual exclusion, single use nonrecurrent

events are sufficient.) In fact, multiple P operations [Di-71, Pa-71] can be easily

expressed In the language, as Is shown In that chapter. single_use recurrent events are

more powerful than the general semaphore, since they may have parameters that can be

I. used to carry some Information in addition to their behavior as synchronization primitives.

The counter associated with a semaphore variable is Implicitly represented by the number of

occurred events which have not been used so far; i.e., the number of existing events from

Synchronization Capabilities - 59 - Section 3.5

the event class representing the semaphore.

When a V operation is executed on a semaphore variable, one of the currently

waiting processes Is arbitrarily selected and resumed. EBL's analogue to a process is an

instance of an event handier; the notion of a waiting process is not applicable since there is

no construct similar to a wait statement (although such behavior can be easily modeled).

When the analogue to a V operation is executed in EBL, it guarantees the resumption of

some "process" executing the analogue to a P operation. The selection of this process is

even less specified than in the case of semaphores since a process which is currently not

waiting (but will start waiting sometime in the future) may be selected. EBL's predicates

however, provide the ability to explicitly control the extent of fairness of an algorithm, as

will be shown in chapter 6.

The obvious difference between EBL's events and the monitor construct [1H-74,

Ho-74], Is that the latter Is more structured. The mutual exclusion which Is Implicit in the

monitor must be explicitly expressed in EBL because EBL's events are primitive objects

which are closer to the semaphores than to the monitor.

The implicit mutual exclusion Is not primitive enough; for example, if a process

which entered the monitor decides to wait for some condition (which depends on the

monitor's state variables) to become true it has to leave the monitor and reenter in the

future. In order to prevent this form of busy waiting the monitor also allows explicit

synchronization operations on condition variables. It might be interesting to compare the

monitor condition variables with singleuse recurrent events. Signaling a condition has no

effect if no process is waiting for it; i.e., no memory is associated with monitor conditions.

'It
Ib,

Section 3.6 - G0 - Synchronizetion Capabilities

However, In EBL, a single use recurrent event is remembered until it Is used. As described

in [Wi-77c], a deadlock may occur when trying to synchronize parallel processes using the

monitor condition variables (instead of using semaphores) because of the lack of memory.

This kind of deadlock cannot occur if mingle use recurrent events are employed since such

events are not forgotten before they are used; i.e., before they have some effect.

The monitor construct also allows the association of a priority with a waiting

process by the use of scheduled waits. A comparison of this feature with EBL's mechanisms

Is given in chapter 6 through the disk head scheduler example.

The mechanism used for synchronization in the Actor model is the primitive

serializer [He-79]. In the Actor model two kinds of actors can be created: an unserialized

actor and a serialized actor. An actor of the first kind can receive and process several

messages concurrently. An actor of the latter kind processes messages one at a time, I.e., it

serializes them. The serialized actor becomes locked when It starts processing a message;

It becomes unlocked when processing of the message has completed. The serialized actor

is In fact an adaptation of the monitor to the Actor model.

An advantage of the serialized actor over the monitor is that in the first case,

during the processing of a request operations can be carried out concurrently, whereas in

the latter case, when a process enters a monitor's procedure Its execution proceeds

sequentially. EBL shares the same advantage of the serialized actor over the monitor in

that concurrency can be employed during the processing of a request.

Synchronization Capabilities - 61 - Section 3.5

Both structured constructs, the monitor and the serialized actor, can be

implemented using the unstructured constructs semaphores and cells (variables). Since the

above unstructured const'ucts can be expressed in EBL, then so are the monitor and the

serialized actor. The state of a monitor Is kept in local variables. The state of a serialized

actor Is kept ir its behavior (another actor); this behavior can be modified by the analogue

of an assignment statement, a become command. The event handlers imp!ementing a monitor

do not have any state Information associated with them. This demonstrates the uniqueness

of our events: the event used to synchronize accesses to the monitor can carry as

parameters the state of the monitor.

3.6 CSP, Events, and Actors

This section compares certain characteristics of communicating sequential

processes (denoted here by CSP) [Ho-78a] with EBL. In addition, some of the

characteristics are also compared with the Actor model since such comparisons give a

deeper insight. Since CSP is a process based model some of the points discussed earlier in

this chapter can be applied. We shall not repeat the discussion here. CSP is a static

language in several respects. For a given program the maximum number of concurrent

processes is bounded. Similar limitations do not exist in EEL or in the Actor model. A given

subprogram which recursively computes factorial(n) can do so only for n smaller than some

given limit. In CSP the set of processes with which a given process can communicate is

fixed and can be found directly from the program text; I.e., there are no process typeI.
variables (in contrast to local variables of a process which exist in CSP) and no preocess

type parameters. EBL and the Actor model are more dynamic In nature. The first allows using
,ph

event class identifiers as parameters of events, and the second allows specifying

,1-. r=

Section 3.6 - 62 - CSP, Events, and Actors

continuat3ns; both features are similar. The feature of e-ent class Identifiers as

parameters does not complicate the Implementation of EBL and increases its modularity and

expressive power. This feature makes programs harder to analyze, but this is a secondary

Issue In our opinion.

CSP does not have the features of process type variables or process type

parameters. This limitation together with the property that each process must explicitly

name the destined process in each message it sends do not allow one to implement

procedures and use them in a modular manner. In particular one cannot write a procedure

named S, then add to the program a process having a new name X which activates S;

knowledge of X must be incorporated in S. In EBL procedures can be expressed in several

ways. One makes use of event class Identifiers as parameters, thus allowing continuations

(see chapter 5); this form does not exist in CSP. The other makes use of tag identifiers.

Upon termination of a procedure it can cause an event from a fixed event class. A

parameter of this event can be a tag supplied to the procedure at call time by the

activating event. This scheme can be viewed as a generalization of the use of an array of

(not necessarily Identical) processes P(i) calling the same procedure in CSP; our tags are

dynamic In contrast to the static nature of Indexes.

A unique characteristic of CSP which has no analogue in EBL or in the Actor model

is that a receiver must explicitly name the possible senders. In CSP the sending of a

message Is synchronized with the receiving of the message. This unique feature makes

synchronization of processes an easy task; however, it has several drawbacks which are

not shared by EBL or by the Actor model. The sender cannot proceed until the receiver Is

ready to accept the message. Messages sent from one process to another are not

'.

,ki

CSP, Events, and Actors - 63 - Section 3.8

buffered; both EBL and the Actor model have unlimited buffering capability. If two processes

X and Y exchange messages and process X sends a nonmatching message to process Y

then a deadlock occurs In CSP. In the Actor model Y can complain about the message. In EBL

the chances ,of a nonmatching message are greatly reduced since the language Is strongly

typed. A nonmatching message of the correct type can be dealt with in any desired way;

this can be achieved by means of an event handler whose instances are activated when

such nonmatching messages arrive.

Another Important difference between EBL and CSP concerns fairness. In this

respect EBL is distinguished from other languages as well, as noted in chapter 2. Consider

the following program (adopted from [Ho-78a]):

stop, terminated: event;
continue: event (int)

on programstart
parcause continue (0) ; stop initiate }

end;

on continue (n: Int) A stop
par cause terminated (terminaLte

end;

on continue (n: Int)
par-cause continue (n+l) (iterate)

end ;

Our fairness rules imply that this program eventually terminates. Hoare, on the other hand,

does not require from implementation of CSP to be fair; thus, the analogous program In CSP

may loop forever. A similar program can be written in Actl. The first event handler in the

above program can be replaced by one actor (ignoring the fact that the two messages sent

by the event handler are not ordered). The last two event handlers can be replaced by a

serialized actor accepting messages of two kinds: continue and stop. The obtained Act1

m m mmm I l l'I*a a mmm ~ ~m. - wIt oeem " "

Section 3.6 - 64 - CSP, Events, and Actors

program Is not equivalent to the above program but it is sufficient for the following

discussion. The Actor model (correctly) does not make any assumption on the order in which

two messages (e.g., continue and stop) sent from one actor to the same target reach their

destination. However, since a serialized actor processes messages in the order In which

they are received, the corresponding Acti program stops Iterating after the stop message is

received.

Suppose knowledge that the event from class stop has oc(urred is brought to

knowledge of the second event handler (or to its Implementation) at tL.ie same time a stop

message arrives to the serialized actor (assuming implementations of the EBL program and

the Act1 program run concurrently on different systems). The Act1 program terminates In

the next iteration of the serialized actor. EBL, however, only guarantees that the program

eventually terminates. CSP does not guarantee termination at all; the process trying to send

the stop message may wait forever If the destined process decides not to accept the

message.

3.7 Relation to Pattern Directed Invocation Languages

Pattern directed invocation languages are used for problem soving In artificial

Intelligence. Their development started by Hewitt [He-69] and is still In progress. Out of

these languages, the one which Is most reminiscent of ours is ETHER [Ko-79]. (its

existence was brought to our attention by Hewitt toward the completion of our research, In

the spring of 1979.) A subset of ETHER resembles an earlier version of EBL (which hasI.

developed since). ETHER's sprites and assertions are analogous to EBI's event handlers

and events respectively. More precisely, an ETHER assertion is analogous to a multi-use

E.

I' .. ." ° m N~"m'~mmUnl ,,, n nnn nnm• • n m mmlul

Relation to Pattern Directed Invocation Languages - 65 - Section 3.7

n-mrecurrent event. The lack of the analogues to EBL's other event types in ETHER

suggests that certain computatiunb which can be expiessed in EBL cannot be expressed in

ETHER. Our single_use events support modeling of mutable objects and synchronization

primitives; these cannot be modeled in ETHER.

In ETHER a sprite can contain other sprites; the inner sprites are exposed after

the containing sprite is activated. An earlier version of EBL also allowed nested event

handlers but this feature was eliminated from the language In favor of multiple event

descriptors in an event handler heading. The expressive power In both cases seems similar

when only multi-use events are employed. However, when single-use events are allowed

the feature of multiple event descriptors increases the expressive power; e.g., a multiple P

operation can be easily expressed in this case. Another prime factor In our decision to

eliminate nested event handlers is ease of implementation. In the current version of EBL the

number of event handlers exposed at any point in time is fixed and they all operate in the

same environment (except the static effect of modules). When nested event handlers are

allowed, the number of exposed event handlers vary with time and they do not operate in

one environment, but rather, nested environments are needed.

The mechanism by which a sprite decides whether an assertion matches It is

comparison of the assertion to a specific pattern. This Is less powerful than the mechanism

used in EBL which allows a general boolean expression (and predicates) for this purpose.

ETHER is based on broadcast and pattern matching mechanisms but It relies on other control

mechanisms as well. For example, conditional constructs are allowed within the body of a

sprite. As another example, ETHER allows a sprite to explicitly abort some activity In

progress by using a special construct (stifle). No special construct Is needed in order to

'I

Section 3.7 - 86 - Relation to Pattern Directed invocation Languages

achieve this effect in EBL. A subcomputatlon can be aborted, and even be resumed, using

the basic event mechanism (by including the predicates exist or none in event handler

headings).

3.8 Relation to Production Systems

The structure of an EBL program is reminiscent of a collection of productions in a

production system [Wi-77a]. An event handler is the analogue of a production. The event

handler heading corresponds to the situation recognition part, and the event handler script

to the action part. A production whose situation recognition part is a conjunction of

conditions can be easily expressed in EBL since an event descriptor list is a conjunction of

event descriptors. A production whose situation recognition part Is a disjunction of n

conditions can be expressed, for example, as n event handlers with Identical scripts. The

common script causes a multiuse nonrecurrent event which activates the action part of

the production (another event handler).

In a deduction oriented production system [WI-77a] one normally begins with a

collection of facts and tries to reach a goal (in forward chaining mode). A fact may be used

several times in the process of moving toward the goal; In addition, a fact may be

established more than once in that process. Therefore, our multluse nonrecurrent

events are appropriate for such systems. In order to solve several unrelated instances of a

problem concurrently one can simply use tags to obtaiii the desired behavior. In other types

of production systems singleuse events can be employed. For example, In a system for

manipulating objects, once an action in a sequence of actions to be performed is taken

there is no need to remember It.

Sr

Relation to Production Systems -67- Section 3.8

The fundamental difference between production systems and our model is that

the first is a sequential model whereas the second is a parallel model. Productions are

invoked one at a time. If several productions can be invoked at some point then the next

production is selected according to priority or some heuristic algorithm. Such a behavior can

be modeled in EBL but better alternatives are available in EBL. In a deduction oriented

system, for example, all possible paths ran be pursued concurrently. (ETHER [Ko-79] is

based on this idea.)

3.9 Relation to Petri Nets

The modeling power of Petri nets is less than that of Turing machines [Pe-77].

Therefore, one cannot expect that a program in EBL, which is clearly a universal language,

could be modeled accurately by a Petri net. However, If one agrees not to model data

dependency in a program, in particular to ignore all where clauses (i.e., to assume that they

are true for each event collection), then a Petri net can be created for many programs (or

subprograms) in EBL. A Petri net can be created for every EBL program satisfying the

following conditions:

P1. Each event handler H contains exactly one event descriptor in its event

descriptor list, or at least one of its event descriptors Is associated with an

event class Identifier of a single use type.

P2. There are no event class identifiers of non recurrent types.

P3. There are no formal parameters of type event.
I.

In order to show how the Petri net Is created we begin with a program in which in addition to

the above conditions all event class identifiers are of single use types.

I,

Section 3.9 -68- Relation to Petri Nets

The basic method is to associate one place with every event class identifier of a

singleuse recurrent type, and one transition with every event handler. The script of a

parallel handler Is modeled by arcs going from the transition associated with the event

handler to the places associated with the classes of the caused events. in case of a

sequential handler, the script is modeled by a chain consisting of arcs places and transitions

starting at the transition associated with the event handler. The chain reflects the order in

which the events are caused. An additional arc goes from each transition in the chain to the

place associated with the class of the caused event. Figure 3.1 depicts the Petri net

corresponding to the following subprogram, In which all event class Identifiers are of a

singleuse recurrent type.

on P1 (1: Int) A P2 (J: int) where i>J
par cause

P1 (1-1) ; P3 (j+1)
end;

on P1 (i: int) A P3 (j: int) where I=j
8eq-cause

P1 (1+1) ; P2 (j+2)
end;

Figure 3.1 Petri net representation of a subprogram

The above scheme may require multiple arcs connecting a place and a transition (in the

1 -

Relation to Petri Nets - 69 - Section 3.9

same direction). Such generalized Petri nets are equivalent to ordinary Petri nets [Pe-77].

The modeling of multi use events requires some sophistication but is still not

complicated if conditions P1-P3 are satisfied. Suppose PI Is a place associated with an

event class identifier of a multi-use recurrent type appearing in the headings of n event

handlers H1 , ... , Hn; n additional places Pil, "", Pin are created. The input arc to the

transition associated with Hj comes from Pij Instead of from Pi; an output arc goes from that

transition to Pij. There is only one outgoing arc from Pi; it goes to a transition whose n

outgoing arcs go to Pi1 1 ... , Pin, This solution simply copies the tokens of Pt to n places Pijp

each associated with one event handler, and recreates them in each Pij whenever they are

swallowed. Figure 3.2 depicts the Petri net obtained if in the previous example P1 is

changed to be of a multiuse recurrent type.

Figure 3.2 Modeling multi_use recurrent events

The scheme presented above does not reflect the existence of event parameters. Since a

non-recurrent event is caused only if an identical event (an event from the same event

class having the same parameters) does not currently exist, this scheme Is not appropriate.

The scheme can be extended in order to model non-recurrent events without parameters

Section 3.9 - 70 - Relation to Petri Nots

but we shall not do so. Ordinary Petri nets are sufficient In this case; In particular, there is

no need for zero testing [Pe-77].

Another difficulty is the use of formal parameters of type event. The problem is

that the class of an event whose class designator Is a formal parameter cannot be

determined from the script of the event handler and Is not fixed. As an approximation, one

can find the set S of all possible event class identifiers to which such a formal parameter

can be bound. S can be found by a simple algorithm based on transitive closure. The part of

the Petrl net corresponding to the event having the forma: parameter class designator will

simply add a token to one of the places correspondi~ig to the elements of S.

The other direction is more successful: each Petri net can be easily expressed

as an EBL program. A singleuse recurrent event class identifier (without parameters) Is

associated with each place in the net. Each transition is described by a parallel handler

whose script causes events from the appropriate classes. The following program

represents the Petri net of Figure 3.1:

P1, P2, P3, P4: event;

on P1 A P2
parcause P1 ; P3

end ;

on P1 A P3
parcause P1 ; P4

end;

on P4
par cause P2

end;

The Initial marking of the Petri net can be easily programmed. One way Is to cause events

corresponding to the Initial tokens In one or more event handlers activated by the event

-- -,

Relation to Petri Nets - 71 - Section 3.9

from the class program-start. In this case, singleuse recurrent events without

parameters and parallel handlers without where clauses are sufficient to describe any Petri

net. Another approach is first to cause the above events and then to enable the rest of the

event handlers by causing an event from the class start.

There are two ways in which an event handler H can check the start condition. In

the first way, the where clause: where exist (start) is added to the heading of H; here,

start can be ur a single use or a multi-use. In the second way, an event descriptor of the

form: A start is added to the event descriptor list of H. Here, start can be of a multi-use or

a single use type; in the latter case, an instance of H should cause another event from the

class start In order to enable other event hi-ndlers (since it uses one when it is activated).

3.10 Relation to Databases

An analogy can be drawn between the language and data manipulation languages

for relational databases. An event class Is analogous to a relation, and each event to a

tuple In a relation. The structure of an event handler (in particular its heading) brings to

mind a query written in a data manipulation language such as SEQUEL [Ch-74a]. They both

define a nonprocedural operation to be performed by the system. The difference is that

once a query Is Initiated, It runs to completion and then vanishes while the database

continues to change. An event handler, on the other hand, is immortal; it stays alive as long

as there is a possibility of change in any of the event classes (and when no such change

I. can happen, the whole program terminates). It is analogous to a query whose execution

never terminates. In order to model a database In EBL some sclheme for achieving mutable

objects Is needed. Such schemes are presented In chapter 5, and In the readers writers

'I

Section 3.10 - 72 - Relation to Databases

problem in chapter 6.

3.11 Sminary

This chapter has exposed some of the Important properties of EBL by

comparisons to other mechanisms. The language constructs are primitive; nevertheless, the

capability of hierarchical program design is provided by modules. Other forms of modularity

which are provided by the language have been discussed. A great deal of parallelism can

be exploited in an EBL program. New activities can be easily spawned, synchronized, and

joined. P operations (and multiple P operations) and V operations on semaphores, monitors,

and serialized actors can be expressed in EBL.

Our model shares some of its characteristics with other models of computation;

however, important differences exist in each case. This chapter developed the relation

between the language and other models such as: message passing models, communication

sequential processes, pattern directed Invocation languages, production systems, Petri

nets, and databases.

'I.

I,

• ,, ° m, -~ r. . *4-o

Definition of the Language - 73 - Section 4

4. Definition of the Language

This chapter completes the definition of the language, whose main concepts have

already been defined In the previous chapters. It contains a definition of the syntax and

semantics of EBL. A formal definition of the syntax is contained in appendix A; it should

serve as a convenient reference, and we have not included the formal definition here to

avoid redundancy. Appendix A is ordered according to the sections of this chapter, and we

suggest that before (or while) reading each section of this chapter, the reader will examine

the syntactic structure fron the corresponding section In appendix A. The following

conventions are used:

1. The syntax is described In an extended Backus-Naur form.

2. A construct enclosed by the braces (...) n must be repeated at least m times and

at most n times. The default values are m=O and n= o .

3. Keywords of the language are printed as bold facs characters in this thesis.

In contrast to the meta-language braces C...), EBL contains the braces (...)

which are used to Indicate the beginning and the end of a comment. Comments can be

Inserted between any two symbols in the program and have no effect on the meaning of the

program; comments may be nested. The chapter starts with the basic constructs; proceeds

with the definitions of types, declarations, expressions; and ends with event handlers,

modules and programs.

t.

I,

,b

Section 4.1 - 74 - Identifiers and Numbers

4.1 Identifiers and Numbers

Identifiers serve to denote objects in the language. The objects are formal

parameters, event classes, tags, and types. The association of identifiers and objects must

be unique within the scope of declaration of the identifiers. Scope rules are given in the

section on event handlers and the section on modules. In various places in this thesis

subscripts are used within identifiers (e.g., Ei) although this is not allowed by the syntax.

The character set is an ordered set of all legal characters in EBL. It contains all digits,

letters, and special characters in the order in which they are listed in appendix A.

Examples of Identifiers:

n (formal parameter identifier)

sum f (event class identifier)

t (tag identifier)

4.2 Constants

Constants appear in expressions. Each constant has a certain type associated

with it, as explained in the following section.

Examples of constants:

-60 { Integer constant)

true (boolean constant)

@a character constant)

'I

- - -,

- .. ~ - . -

Types and Type Identifiers - 76 - Section 4.3

4.3 Types and Type Identifiers

Every constant, identifier, or expression has a type associated with it. The type

determines the set of values that an object of that type can assume, as well as its

semantics. The basic types: int, bool and char have the conventicnal meanings. The values

associated with objects of type tag are obtained from the global tag set, as explained in

chapter 2. An event type represents a group of events. Each event has a fixed number of

parameters associated with it, each of a distinct type determined by the corresponding

type in the type list of the event type. An event type contains two optional nrefixes. The

default prefixes are: single use, and recurrent. A type can be denoted by a type

identifier, as explained in the next subsection.

Examples of types:

Int

event (tag, Int) (singleuse recurrent by default)

multi-use event (bool, tag) (recurrent by default)

cont (type identifier)

4.3.1 Type Identifier Definition

A type Identifier is equated with a list of one or more typos. It can be used as a

shorthand notation, or as a means for type abstraction. It should be emphasized that If a

type Identifier is used at any level of nesting within the module in which it has been defined,

then its structural details are known at that point; otherwise (outside the module), only its

name may be known. The ability to denote a list of known types by a single type Identifier

allows one to bind a single formal parameter of that type to a list of actual event

parameters, when no computation needs to be performed on them. An example of this

'I.

Section 4.3.1 - 76 - Type identifier Definition

feature is given in the section on event handlers.

Examples of type identifier definitions:

cont, tl == singleuse recurrent event (nt, tag);
(both cont and tl represent the same type)

t2 == int, tag; { t2 represents a list of types)

t3 single use recurrent event (t2) ;

(t3 Is Identical to tl only if the structural details of t2 are known)

4.4 Declarations

The term declarations actually refers to both declarations and definitions. Type

identifier definition has already been described. The declarations of event handlers and

modules, which are more complicated, are described later in the corresponding sections;

event class Identifier declarations and tag identifier declarations are described next.

4.4.1 Event Class Identifier Declaration

An event class declaration associates event class Identifiers with an event type,

or with a type identifier whose structure is known as equivalent to an event type. Each

event class Identifier denotes a class of distinct events of the event type. An event from

the event class is determined by the event class identifier and the values of Its

parameters. Before execution of the program is started, no event from the declared event

class has occurred. Events are considered to have occurred after they are caused either

explicitly by execution of the script of an Instance of some event handler, or after the

I. system has caused them. The system can cause either system events or events from a

class whose event class Identifier appears as a parameter of a system event. This

happens, for example, after some system activity has beer completed, or when some

..

Event Class Identifier Declaration - 77 - Section 4.4.1

external signal has been detected, depending on the semantics of the particular system

event.

Examples of event class declarations:

sum f: singleuse recurrent event (int, int)

sum1, sum2: cont ; { cont is known to be an event type)

4.4.2 Tag Identifier Declaration

The semantics and use of tags have been described 'n chapter 2. Note that the

value associated with a tag identifier cannot be modified. It can be copied as a parameter

of several events; it can be compared with those of other tag identifiers or formal

parameters of type tag, but there are no other operations that can be done on objects of

that type.

Examples of tag identifier declarations:

t1, t2: tag; f assume values: *e, and , respectively }

4.5 Expressions

Expressions in EBL are rather conventional. They consist of operands (constants

or Identifiers) and operators. An operator operates on arguments (operands or

subexpressions) whose types must be consistent with the operator. Operator precedence

Is determined from the syntax of the expression. A sequence of operators with equal

precedence Is executed from left to right. Some of the operators in the language are called

a. built-in functions; these are in general more complex operators, but they have nothing to do

with conventional functions. Each expression has a type associated with it; this type is

either a basic type (int, bool, or char), or a non-basic type; the expressions are named

I,

Section 4.5 - 78 - Expressions

accordingly.

4.5.1 Integer Expression

The operators in an integer expression are + (plus), - (minus), = (multiply), /

(divide), div and mod. They operate on arguments of type int and yield values of type int.

The operator ./ performs division with truncated fraction. In case of the operators dlv and

mod the divisor must be positive. The operator div yields the largest integer not greater

than the value of the mathematical division. The other operators have their conventional

meanings. The built-in functions are:

1. abs which operates on an argument of type int and yields a value of type int,

which equals the absolute value of the given argument.

2. ord which operates on an argument of type char and returns the ordinal number

of the argument value in the character set.

Examples of Integer expressions:

n-1

-(rl + r2) / (i div J) + abs (k)

4.5.2 Boolean Expression

The constants of type bool are true and false. The operators In a boolean

expression are the boolean operators: not, and , or, and xor; and the relational operators:

(, <=, =, >=,). The former have their conventional meanings and operate on arguments

I. of type bool yielding a boolean value. Relational operators yield a boolean value but can

operate on arguments which are not necessarily of type bool. The operators = (equal) and

() (not equal) can operate on any two arguments of the same type. The values of the

Boolean Expression - 79 - Section 4.5.2

arguments are compared and the resulting value is determined accordingly. The meaning of

equality is determined as follows:

1. The result of comparing two expressions of a basic type is self explanatory.

2. The result of comparing two identifiers of type tag by the operator = is true, if

they have the same abstract value, from the global tag set, associated with each

of them. In the case of two distinct identifiers, this may happen only if at least

one of the arguments is a formal parameter of type tag.

3. Two identifiers of type event are equal if they represent the same event class

(a formal parameter of type event represents the class of events to whose

event class identifier it is bound).

4. The result of comparing two formal parameters of a type denoted by a type

identifier that represents a list of types is determined as follows: The two

arguments are considered equal if each of their corresponding subcomponents

are equal according to these definitions.

5. Two identifiers of types whose structural details are not known at that point in

the program must be formal parameters, they can be comipared with each other

only if they are of the zame type (denoted by a type identifier). For the

comparison the structural details of the common type are made known and the

result of the comparison is determined acco.'ding to the above definitions. Note

that comparison of objects whose common type Is not fully known at some point

In a program Is normally done by using a special equality operator which is

defined at the same program module in which the commOr type is defined (see for

example MODULA [WI-77b]). The more liberal use of the standard comparison

operators (and 0>) in EBL is motivated by the relatively high frequency of

M

Section 4.5.2 - 80 - Boolean Expression

comparisons in programs.

The operators <, <=, >=, and > operate on two values of type int.

Examples of boolean expressions:

c (= n and not b

tl = t2 (comparison of tags

bl 0) b2 (when both are formal parameters
of a type defined as: t2 == int, tag)

4.5.3 Character Expreassion

A character expression can be a constant (a character preceded by a quote), a

formal parameter of type char, or an activation of the built-in function chr. The built-in

function operates on an argument of type int and returns the character whose ordinal

number In the character set is equal to the value of the argument (if such a character

exists).

Examples of character expressions:

'a

formal-char (formal parameter of type char)

4.5.4 Non-Basic Expression

A non-basic expression is an expression whose type Is not a basic type. The

common characteristic of all non-basic expressions is that they contain no operators. They

can be subdivided as follows:

1. The expression Is of type event. In this case, it can be either an event class

identifier, or a formal parameter of the correct event type. In both cases, the

value of the expression is the name of the denoted event class Identifier.

a -'

Non-Basic Expression - 81 - Section 4.5.4

2. The expression is of type tag. In this case, the expression Is either a tag

identifier, or a formal parameter of type tag. In both cases, the value of the

expression is the unique value, from the tag set, associated with the identifier in

the expression.

3. The expression is a formal parameter of a type denoted by a type identifier that

represents either a list of types, or a type whose structural details are not

known at that point in the program. In both cases, the value of the expression is

the value to which the formal parameter is bound.

Examples of non-basic expressions:

c (formal parameter of some evr - .ype }

t (tag identifier)

rec (formal parameter of a type defined as:
record == int, int, bool)

4.6 Event Handlers

The event handler concept has been explained at some length in chapter 2.

Here, some additional details are given. When an instance of an event handler is act'ated,

first its local identifiers are brought into existence: its formal parameters are bound to the

corresponding actual parameters of the activating events, and its tag Identifiers assume

proper unique values from the tag set. Then, the script of the event handler is executed

(i.e., the specified events are caused). The instance of the event hadler Is active from the

moment it has been activated until the execution of its script has been completed.

Section 4.6 - 82 - Event Handlers

The scope of a formal parameter in the event handler heading includes the whole

event handler; whereas, the scope of a tag identifier includes the whole script. Free

identifiers in some part of the event handler must be known at the the containing module

body. Note that formal parameters and tag identifiers declared in an event handler are local

identifiers of that handler; they are not known outside the handler and there is no way of

exporting their names. The following example shows how type identifiers can be used to

abstract the values of some parameters:

record == int, int, bool
E, E2: event (record, Int)

on E (r: record, i: int) where (100
parcause

E (r, i+) ; E2 (r, i-1)
end;

on E (il, 12: int, b: bool, i: int) where i>=100
seq cause

E (-i1, 1i -i2, not (b), 0);
end;

In the first event handler, no computation needs to be done on the values of the first three

parameters of the event from class E. They are bound to one formal parameter that can only

be copied in the script. In the second handler, the values are needed for some

computations, so they have been bound to separate formal parameters. Note that if record

were defined in a module not containing the above handlers, and were appropriately

Imported to the module containing the above handlers, then only the top handler would be

legal. The structural details of the type identifier, record, are not known here in this case.

An event class is denoted in an event handler either by an event class identifier,

or by a formal parameter of an event type (that is bound to an event class identifier). In

both cases we say that the class is denoted by a class designator.

'I

i!Illll ~lllnlllln lll I I.. "

Where Clause Predicates - 83 - Section 4.6.1

4.6.1 Where Clause Predicates

The language contains special predicates that can be used in the where clause

of an event handler to specify constraints on the order of choosing event collections to

activate instances of that event handler. These predicates are appended to the (optional)

boolean expression In the where clause. The semantics of the where clause is that in order

to activate an instance of an event handler for a collection of events, the value of the

boolean expression must be true (if it exists), and in addition, all the predicates must be

satisfied for those events. Several predicates can appear In the same condition; In such

case they are processed from left to right. The action of evaluating the where clause (in

particular, the predicates) and selecting an event collection out of the various candidates is

atomic; It can be viewed as an action which takes zero time. The meanings of the different

predicates are defined below.

1. exist: The argument specifies the name of an event class. The predicate is

satisfied If at least one event of that event class currently exists; e.g.,

on E1 (i, J: Int) where (i>0) A exist (E2)

2. none: The dual of exist. The predicate Is satisfied if no event of the specified

event class currently exists.

3. min: The value of the (Integer) argument is the minimum over all possible

collec one of existing events that match the part of the event handler heading

to the left of the min predicate; e.g.,

on E1 (I, J: Int) where min (I-j)

I.
4. *eix: The dual of mai; e.g.,

h.b

'I

Section 4.6.1 - 84 - Where Clause Predicates

on E1 (I, j: int) where ((0) A max (I)

(choose an event from E 1 with maximum negative parameter)

5. first: The argument specifies the name of an event class (by means of an event

class Identifier without a formal parameter list), or an event that is a candidate

to activate an instance of the event handier (by Including the formal parameters

of an event descriptor from the heading). In both cases, the specified event

class must be one of the event classes specified In the event descriptor list of

this event handler. The selected event occurred first among all existing events

from the denoted class that match the part of the event handler heading to the

left of the first predicate; e.g.,

on E1 (i, J: Int) where (DI) A first (E 1)

(choose the first event from El for which I>j)

on E1 (I, J: int) A E1 (p, q: Int) where (i>J) A first (El (I, J: Int))

(choose the first event from El for which l>j,

and another one arbitrarily }

6. last: The dual of first; e.g.,

on E, (I, J: int) where last (E I) (last in first out order)

Note that one of the properties of the above predicates Is that if they are evaluated for the

same collection of events at two different points In time their values may change (due to

the possible creation and disappearance of other events).

4.7 Modules

Most features of the module have already been described. If a module does not

eontain an import list, none of the Identifiers declared or defined outside it can be

referenced within its body. Clearly, such a module is not Interesting since none of Its

handlers can ever be activated. The other extreme case is that of a module that imports all

,' I

Modules - 85 - Section 4.7

Identifiers known out of its body. This can be achieved by using the keyword all, or by

explicitly listing all identifiers. This case Is not useless; It allows declarations of local

identifiers within this module, and exportation of some of them if needed. All identifiers

known within a module body can be exported by using the keyword all In the export list.

The scope of an identifier declared (or defined) in a module body Includes every

event handler declared in that body (unless that handler uses a local identifier with identical

name), and all Inner modules that Import that Identifier. If this Identifier is exported from the

module, its scope is determined according to the above definition as if it has been declared

in the body of the containing module. If an imported identifier is not declared or defined in

the importing module, its scope within this module is determined as if it has been declared

in the body of the module; otherwise, the Imported Identifier Is not known within the module

body and instead, the locally declared identifier is known there.

4.8 Programs and System Events

i ne structure of a program Is identical to that of a module body. A program can

be viewed as if it is contained within an implicit module. This module contains, In addition to

the program itself, implicit declarations of the system event class identifiers. The system

routines that handle the system events can be considered as special event handlers

defined in this implicit module. System events are the mechanism by which a program

Interacts with the external environment. Possible examples of several simple system event

class Identifiers that one can expect to find In Implementations of the language are:
i.

1

Section 4.8 - 86 - Programs and System Events

print: singleuse recurrent event (int)
{ print and do not reply)

printc: single use recurrent event (int, tag, event (tag));
(print, then cause continuation event with given tag)

read: singleuse recurrent event (tag, event (int, tag)) I
{ cause continuation event with read data, and given tag)

tick: multiuse nonrecurrent event (int) ;
(caused each tick of the real time clock in the system
with Increasing consecutive numbers }

The system event class Identifier programstart is considered as part of the language.

The system causes one event from this class when the program is started. It Is

pre-declared as:

programstart: multi-use recurrent event;

4.9 Summary

This chapter has completed the definition of the language by defining the

various types of expressions in the language, the scope rules for event handlers and

modules, and the where clause predicates. The where clause predicates Increase the

expressive power of the language as shown in chapter 6. However, they somewhat

complicate the implementation of the language as discussed in chapter 7.

1.

1 b

Expressive Power of EBL - 87 - Section 5

5. Expressive Power of EBL

The expressive power of a language is a measure that refers to the ease with

which algorithms can be constructed in the language. This measure is not quantitative and

is rather vague. The following two chapters attempt to give the reader a feeling about the

expressive power of EBL. This chapter shows how conventional language constructs; such

as: goto statement, if statement, while statement, procedures, functions, variables,

assignment statement, and semaphores; can be mapped onto EBL. A translation scheme

from an extended language XEBL to EBL is given. The purpose of this chapter is not to

encourage the use of the presented schemes, but rather to show that all those constructs

can be modeled in a straightforward way and can be used in a systematic modular manner If

desired.

The representation of most of the above conventional constructs in EBL requires

a longer program text in EBL than in other languages which include the constructs in their

repertoire. The reason for this is twofold: First, the absence of these constructs from EBL;

and second, the fact that the constructs of EBL are rather primitive. The difficulties that

one would encounter while trying to express the event mechanisms of EBL in another

language are probably greater. The next chapter tries to balance the picture by giving

some examples that are easily expressed in EBL.

The following sections show how each of the above language constructs can be

mapped onto EBL when treated separately. In other words, interaction among constructs

(e.g., an If statement within a while statement) Is not treated. After the presentation of

these basic schemes everything Is put together by a translation scheme from XEBL to EBL.

I L

Section 5 -88- Expressive Power of EBL

In the following sections Si denotes an arbitrary EBL script, and B denotes a boolean

expression.

5.1 Goto Statement

If L is a label in the program, then one possible way to express the following

construct,

on <eventhandlerheading)
(<tagdeclaration>)

(par cause I seq cause
s o ;

goto L;
S 1

end ;

In EBL is as follows:

on <eventhandlerheading> (<tag declaration>)
(par cause seq cause --

L ; (cause a goto event)
S
1

end ;

L: event;

on L

end;

Note that if S1 is not empty and the event handler Is a sequential handler then the scheme

actually presents a fork statement; in order to obtain a goto statement, S1 should be

eliminated. The above method can be extended to enable passing some explicit data to the

target label by adding parameters to L.

1.

,b-

r.~

If Statement - 89 - Section 5.2

5.2 If Statement

The following construct,

on <even_. iandier-heading> ((tag-declaration>)
seqcause

s o ;

if B then S1 else S2
Sa

end ;

can be expressed In EBL as follows:

on (eventhandier heading> ((tag-declaration>
seq cause

SO

if (B) { select an alternative)
end ;

If: event (bool)
endif: event ;

on If (b: bool) where b (alternative 1)
seq_cause

S 1 ;
endif

end ;

on If (b: bool) where not b (alternative 2)
seq cause

S 2 ;

endif
end ;

on endif (continue after the if statement)
_eq cause

S3

end
;

I.

The above scheme deals with sequential handlers; the case of parallel handlers

is even easier to express. The scheme should be slightly modified if S1, S2 , or S3 refer to

formal parameters of the containing event handler. In this case, the values denoted by the

I .

Section 5.2 -90- If Statement

formal parameters will be passed to the two event handlers which are activated by

occurrences of if. simply by adding the necessary parameters to the event class Identifier

if. The if statement translation scheme can be easily extended to handle a case statement.

In the EBL subprogram corresponding to a case statement consisting of n alternatives all n

predicates can be evaluated concurrently.

6.3 While Statement

The following construct,

on (event handlerheading> (<tagdeclaration>)
seq_cause

SO;

while B do S1 end;

S2

end;

can be expressed in EBL as follows:

on (event-handierheading> (<tag declaration>)
seq cause

S O ;
while (B) ; (activate the while statement)

end;

while: event (bel);

on while (b: bool) where b (entry to the "loop")
seq cause

S 1

while (B) (another itertdon)
end ;

on while (b: bool) where not b { continue on termination)
seq cause

I.S2
end;

While Statement - 91 - Section 5.3

As in the case of the if statement, the above scheme should be slightly modified

in order to express parallel handlers or If formal parameters of the original event handler are

referred to in S1 or S2 ; the same methods can be applied here.

5.4 Procedures

If pr is a procedure name, then one of the ways to express in EOL the declaration

of the procedure pr,

procedure pr ((formal parameterlist>) 21
(<tagdeclaration>

do
S o ;
return

end;

Is as follows:

epr: event (event Ctag), tag (, <type-list> 21);

on epr (c: event (tag), t: tag (, <formalparameterlist> 21)
(<tagdeclaration> 2

(par cause I-seq cause)I
s o ;

c (t) (signal procedure termination)
end;

The following procedure call,

on <eventhandler heading) ((tagdeclaration>)
seq cause

S 1 ;

call pr ((actual_parameter> (, <(ctual_parameter> 2) }1
D S2

i. end;

will now be expressed as:

Section 6.4 - 92 - Procedures

con: event (tag); (continuation event)
Jpr: event (tag ...); (for passing state to continuation point)

on (event handler-heading> ((tag declaration>)
tpr: tag ; (declare a unique tag for this call)

seq cause

epr (con, tpr (,<actualparameter> (actualparameter>)1)
(call pr I ;

jpr (tpr ...) (to join the continuation point)
end;

on con (tl: tag) A jpr (t2: tag, ...) where tl=t2 (when result arrives)
seq_cause

S 2

end ;

The above scheme for mapping procedure calls allows recursive procedure calls,

and concurrent activations of the same procedure. It uses continuations as the mechanism

for "returning" from the procedure call. The scheme allows passing state Information to the

continuation point by communicating to that point an event from the class jpr. The scheme

uses tag parameters for distinguishing between different calls to the procedure. A tag

Identifier is declared within the event handier containing the procedure call. For every

Instance of the event handler which invokes the procedure, the (local) tag identifier

assumes a unique value; thus, no ambiguity occurs on joining the results at the continuation

point. Therefore, recursive procedures and concurrent activations of procedures can be

used. In procedures that do not require all the above features, the mechanism can be

simplified.

'. .t.-

Functions - 93 - Section 5.5

5.5 Functions

In order to express a function in which the return statement has an argument

specifying a value to be returned as the function result, only slight modifications are needed

in the scheme for expressing procedures described above. The first parameter of the

event class identifier epr will include in its type list in addition to a tag parameter also the

result parameter. The event c(t) in the script of the function definition will be modified to

c(t, ...) where the dots represent the returned expression. Some other trivial modifications

resulting from the above changes need to be done. The scheme proposed here can be

easily extended to express a function returning several values.

6.6 Variables

EBL has no conventional variables and no assignment statement. Despite this

fact, both of those can be easily mapped onto EBL and the effect of mutable objects can be

achieved. This chapter shows how variables can be modeled through the use of singleuse

events. The next chapter includes an example (the readers writers problem) showing how

multiuse events can be used to model the effect of mutable objects. This section deals

with references to variables and the next section with assigning values to variables.

single_use events can be used to "store" the variables' values. In the following

declarations of variables,

v: (basictype>
rv: record (field list))
av: array [(indfx_range> (, <indexrange>)] of <basic_type>

the syntax of <fieldlist> is similar to that of (formalparameter_list>, with the only

differnnce that a field must be of basic type; and the syntax of <indexrange> Is

<constant> .. <constant>. The declarations will be replaced by:
1.

IH

Section 5.6 - 94 - Variables

ev: event C(basic_type>)
erv: event (<basictype> (,<baslc_type>));
eav: event (int , Int ,<basic type>)

on programstart
(par cause Iseq cause)i

ev C...) (some initial value of basic type)
erv ...) { some initial value for every field;
(For each element of the array av, cause an event from the event

class eav. Cause all elements of the array, either
explicitly or use the while statement scheme)

end ;

Each conventional simple variable (a variable of a basic type), record variable, or

array is represented by an event class identifier of a single use type. Exactly one event

from every class is caused (one event object is created) initially for every simple variable,

record variable, or array element. The parameters have some default values according to

their types, or according to the values to which the variables were to be initialized. For

convenience the name selected for each event class identifier is obtained by adding the

character "e" to the variable's name; thus, keeping the original name for a later use, as will

be shown shortly.

Now the way to reference variables is examined, starting with references to

variables of a basic type In expressions. The idea is simple: if several variables appear in

an expression, the modified names of those variables are included in the heading of the

event handler containing the expression; thus, the current values of those variables are

read (and destroyed) waien the Instance of the event handler Is activated, and then

restored when the script is executed. Assume that a, b, ... , z are the names of the

variables Included In an expression <exp>, then the following construct,

IkM

THE EVENT BASED LANGUAGE AND ITS MULTIPLE PROCESSOR IMPLEMENTAT-ETC(U)
JAN B0 A REUVENI N00014-75-C-0661

UNCLASSIFIED MIT/LCS/TR 226 ML

mmmmmmmmm

11111- 112
1 *6

L. 40 2l*0~

11111 inn~ iiIH1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURFAU OF SIANDARDS 1963 A

Variables -98- Section 5.6

on <event descriptorjist (where (condition>
((agdeclaration))

(par_cause I seq cause 1

{a statement containing (exp))

end;

will be represented as:

on <event descriptor_list> A

'S. ea (a: (basic_type>)A ... A ez (z: (basic type)
(where (condition>

((tag declaration)

(parcause I seq_cause)i

S, ;
ea (a); (restore t: e variable)

ez W restore the variable
{ a statement containing (exp>);
82

end;

In the above scheme, the expression Itself Is written unchanged (as a result of

the selected naming scheme). Of course, naming conflicts should be resolved, but this Is a

trival problem.

In order to refer to the field fi of record variable rv In an expression, the

following event descriptor,

erv(..,f (fbasic t type>) , .

can be Included in the heading. In addition, the following event,

erv e f); (restore the record variable

SIs added to the script of the event handler. In order to refer to some array element In an

expression, e.g.,

Section 6 -96- Variables

v Index> .. (ndex> n]

where <Index> is an integer expression, the modified names of all variables appearing In

Indexes of the array are simply included In the heading of the event handler; in addition, an

event descriptor for the array element Itself is added and the where clause Is modified.

The added event descriptor Is.

eav (11 ... in: int, av: (basictype>)

and the following clause is appended to the boolean expression in the where clause:

and (1, (index>1 and ... and In = (index>n)

The script will include the event:

eav (i,, ... , In av); (restore the array element)

Function calls within expressions In some statement S, can be moved to

assignment statements before S such that each assignment statement In the (modified)

program contains at most one function call, which Is at the outermost level of the

expression. The section on assignment statement deals with this case.

5.7 Assignent Statement

Since one event object carries the current value associated with a simple

variable, the current record associated with a record variable, or the current value

associated with an array element, the assignment consists of destroying the current event

object (variable object) and creating a new one. Thus, the effect of mutable objects Is

I, achieved by destroying the current objects and creating updated ones. First, consider the

case in which the right hand side of the assignment statement does not contain a function

call. This case is further subdivided according to the left hand side of the assignment

r -- , . .-

Assignment Statement -97- Section 5.7

statement which can be a simple variable, a record variable component (e.g., rv.fl), or an

array element. Assignment to the simple variable v,

on <eventhandler heading) ((tagdeclaration))
(parcause I seqcause);

V :a <exp);
82

end;

where <exp) refers to variables a, b, ... z will be represented as:

on (eventhandlerheading) ((tag_declaration))

(parcause I seqcause

81;

L (goto the assignment handier)

end;

L: event; (event for activating the assignment handler)

an L A OV (v: (basictype)) A (the assignment handler)
ea (a: (basic type)) A ... A OZ (z: (basictype))

per cause I seq_oseo)i

as (a); (restore the variable)

I
ez (z); restore the variable)
ev((axp)); assign new value to v
82

end;

Assignment to record variables and array elements can be expressed in a similar fashion.

Parallel assignments to several fields of a record variable can be easily achieved by

changing more than one parameter in the event that assigns the new record to the record

i.* variable. In fact, using tis Idea one can Implement several conventional variables as

distinct fields In a newly created record variable and then have an atomic pware

• auignmen(to several variables.V

1:

r

Section 6.7 -96- s Statement

As stated previously, the program can be modified such that each assignment

statement contains at most one function call (which Is at the outermost level of the

expression on the right hand side). The cases In which the right hand side of the

assignment statement Is such a function call are dealt with by combining the scheme

presented In the section on functions with the scheme presented above.

6.8 Sinephores

This section shows how operations on senapho- varirbles can be expressed In

EBL. A general semaphore variable can be implemented as an event class Identifier of a

slngleuse recurrent type. The declaration of semaphore variable a,

s: semaphore;

Is replaced by:

s: event;

The V operatiok

V (a);

IS replaced by:

es;

The P operation In the following event handler,

on event handler-heading> ((tagdeclaration)
seqcause

P ();

end
;

Is replaced as follows:

,1' "

Semaphores -99- Section 6.8

on <eent handler-heading> ((tag_declaration>): 8eq-c4u"e

31;

L activate the P handier)
end;

L: event (event for activating the P handler)

on L As the P handier)
seq-cause

62

end;

General semaphore variables are often used to control the allocation of Identical

resources (e.g., printers). The ability to attach parameters to semaphores in EBL greatly

simplifies the allocation of such resources, since the waiting process can get some

information on the specific allocated resource (e.g., its logical number) when It is allowed to

proceed. Multiple P operations [Di-71, Pa-71] can be easily expressed In the language.

The P handler above Is written as:

on L es 1 A ... A esn (the multiple P handler)

aeqecause
82

end;

The desired semantics Is achieved since the activation of an Instance of an event handler is

an atomic action. An example of the use of the multiple P operation, the five dining

philosophers, is given In the next chapter.

Earlier It was shown how conventional variables can be mapped onto EBL by using

event class Identifiers of a single use recurrent type. In the scheme proposed there, a

reference to a variable has been always replaced by an event descriptor In the event

handler heading, and a restoring event In the script. These operations are actually P and V

operations; therefore, In many cases no additional synchronization operations are needed.

....

.. nm- l =. n , . , . , , ,

section 6. -lOO- Setapwtee

One can think of that scheme as waiting for the variables to be acceslble, using them, and

treeing them when the operation Is done.

5.9 Extensions to EBL

Each of the previous sections In this chapter treated separately one

conventional language construct. The rest of this chapter demonstrates how a program

containing many of these constructs can be translated to EBL The following section

describes several extensions to EBL, resuiting in an extended language XEBL. XEBL is not

proposed as an Improvement to EBL, but as a concrete example for demonstrating that such

a translation Is feasible. The remaining sections outline an algorithm for translating a

program from XEBL to EBL. The translation is done In two phases: a translation from XEBI to

its kernel, and a translation from this kernel to EBL.

5.9.1 Extended EBL

This section does not Intend to give a precise definition of XEIL. A general

description of the language is sufficient for the following discussion. In EeL the only kind of

a program unit Is an event handler. In XEBL a program unit can be an event handler, a

procedure, or a function. Program units cannot contain one another; however, they can be

contained in modules. The structure of a program unit is similar to that of an event handler.

The body of a program unit contains (optional) tag declarations and a script.

A script Is a list of statements. There are simple statements and compound
I.

statements; a compound statement is a sequence of simple statements delimited by

statement brackets. The posble simple statements are: cause statement (whose structure

* is cause <event)), goto statement, If statement, while statement, procedure call,

r2 -•

!I ,. .. m.. ..

Extended EL -101- Section 8.9.1

assignment statement, P operation, and V operation. Statements can contain other

statements, like In block structured languages; those which are not contained In other

statements are of level zero. Like In EBL, a script can be either parallel or sequential. In the

first case execution of the statements of level zero Is not ordered (in this case the script

*contains several parallel script branches), and In the latter case it is ordered (in this case

the script contains one script branch). The execution of a script branch is always

sequential, even In case of a parallel script.

The target of a goto statement (the label) must be in the script containing the

goto statement. A goto statement In one branch of a parallel script cannot specify as Its

target a label within another branch of that script. There are simple variables (variables of

basic types), record variables, and array variables. Variable declarations cannot appear

within program units. Variables and function calls can appear in any expression except In

event handler headings.

5.9.2 TraWatlo firom XEBL to Its Kierel

The main three steps In the transformation of a program from XEBL to Its kernel

k are discussed now. First, every while statement is transformed to an equivalent statement

sequence which uses an If statement and goto statements. Second, function calls In actual

parameters of cause statements, procedure calls, and function calls are eliminated. This is

a done by adding appropriate assignment statements before the original statements, and

declaring new variables as necessary. Third, every assignment statement Is transformed to

an equivalent sequence of assignment statements. The left hand side of each assignment

statement contains no function cael (in array indexes), and the right hand side contains at

1

L L a .. ,' d

Section &9.2 - 102- Translation from XEDL to its Kernel

most one function call (which In at the outermost level of the expression).

The transformations are done In a way which preserves the various script

branches In each script. This is achieved by adding statement brackets as necessary.

5.9.3 Translation from the Kernel to EBL

The algorithm for translating a program from the Kernel of XEBL to EBL is outlined

In this section.

1. Replace every variable declaration by an appropriate event class Identifier

declaration. Add event handlers for causing initial events from these event

classes. This initialization Is triggered by the initial event program-start. In case

of array variables, perform the Initialization by using the translation scheme for a

while statement presented earlier in this chapter.

2. Transform every procedure or function declaration to an event handler. At this

step only transform the headings and create a new event class Identifier for

each procedure. The script Is handled in other steps of this algorithm.

3. Spilt every statement containing a function call into two statements: a function

call (identical to a procedure call), and a special assignment statement whose

right hand side is function return.

4. Find the basic blocks In each script and build a flow graph [Ah-77]. A basic block

starts on: (1) the beginning of each script branch; (2) each labeled statement

which Is the target of at least one goto statement; (8) the beginning of each arm

in an if statement; (4) each P operation; (5) each statement immediately

following the end of a basic block (as defined next) in a sequence of statements.

1' - -,| . -1

Translation from the Kernel to EBL - 103 - Section .9.3

A basic block ends In the following cases: (1) after the last statement

In each script branch; (2) after each goto statement; (3) after the test in each if

statement; (4) after each procedure or function call; (5) after each statement

immediately preceding the beginning of a basic block (as defined earlier) in a

sequence of statements.

5. Attach a unique label L to the beginning of each basic block B (if needed). Add

goto statements at the end of basic blocks leading to B (according to the flow

graph), except in basic blocks which terminate by a goto statement, a procedure

call, or a function call. In a block leading to B, which ends with a procedure call

or a function call, L will be used as a continuation in the event replacing the call.

8. For each basic block B (except In the cases defined next) whose first statement

is labeled by a label L, create a new event handier whose event descriptor list

contains L. The exceptions are: (1) B is the first basic block In a sequential

script; (2) B contains exactly one statement, a cause statement, a goto

statement, or a V operation, and It corresponds to a complete script branch in a

parallel script.

7. In a parallel script, for each script branch which was transformed to at least one

1** event handler (in the previous step) replace the script branch by a goto

statement. This goto statement is In fact a fork statement; Its target is the

event handler corresponding to the first basic block in the script branch.

8. At this stage the program is In a form which is suitable for a simple application of

the translation schemes for each of the constructs as discussed earlier in this

chapter. First, references to variables appearing In expressions and assignment

statements are dealt with. The structure of cause statements is modified

N

Section 5.9.3 - 104 - Translation from the Kene to FS.

according to the syntax of EOL (elimination of the keyword cause). Then,

procedure calls, function calls, and returns from procedures and functions are

treated. At this stage, goto statements and If statements can only appear at the

end of a script branch. Moreover, an if statement has the restricted form:

If (boolexp> then goto <label>1 (else goto (label> 2);

The translation scheme for goto statements and if statements can be applied.

The translation algorithm generates new Identifiers in various steps. We assume

the existence of some simple mechanism for generating unique Identifiers. Note that formal

parameters of a program unit In XEBL can be referenced In statements which move to new

event handlers in the translation process. The referenced parameters should be passed to

these event handlers by the activating events.

5.10 Summary

The language does not contain conventional constructs such as: variables,

assignment statement, goto statement, Iteration constructs, procedures, functions, and

semaphores. The reason Is that these constructs can be easily modeled in the language. A

scheme for systematically translating a program containing these constructs to EBL has

been developed in this chapter.

I.]

12

" - --

r
Classical Examples - 106 - Section 6

6. Classical Examples

This chapter shows how some classical problems can be solved In terms of EBL.

Its purpose Is twofold: first, to show the ease of expressing the solutions, and more

Important, to lead through each example to some Interesting observations on the language.

6.1 "Recursive" Linear Fibonacci

This section demonstrates one of the possible applications of multi-use

non-recurrent events, computing functions by tables, by presenting a subprogram for

computing fibonacci(n). (A similar solution appears in [Ko-79].) If the event F(n) is caused,

the handlers cause RF(n,s), where n Is the original argument, and s is equal to fibonaccl(n).

F, JF: multi-use non-recurrent event (Int);
RF: multi-use non-recurrent event (int, int);

on F (n: Int) where n:O or n=1 (basis)

par cause RF (n, n)
end;

on F (n: Int) where n) 1 induction step)
par cause

F (n-1);
F (n-2);
JF (n) (for joining the results)

end;

(the joining event handler)
on JF (n: int) A RF (nl, sl: int) A RF (n2, s2: int)

where nl n-1 and n2an-2

*" par cause RF (n, sl s2) (add the two subresults)
end;

I. The above handlers can be used as follows:

I '1 [... . i

Section 6.1 -106 - "Recursive" Unear Fibonacci

F (I); (activate (if necessary))
L (I) (for joining the result)

end;

L: event (int); f for activating the continuation handler }

{ the continuation handler)
on L (ni : int) A RF (n, a: int) where n 1n

{ use the result)
end;

The structure of the program brings to mind the known recursive Implementation

of the function but the semantics of EBL's events causes a unique behavior. Since

multi-use non-recurrent events are employed, for each n at most one event of the form

F(n) can exist and once such event is caused It remains forever. Thus, for each n at most

one of the first two handlers is activated since their activating conditions are mutually

exclusive. For each n the joining event handier is activated at most once. This can be

proved by showing that for each n the following properties hold:

P1. There is at most one event of the form JF(n).

P2. There is at most one event of the form RF(n-l,sl).

P3. There is at most one event of the form RF(n-2,s2).

Property P1 holds since JF is a multi use non recurrent event class Identifier.

Properties P2 and P3 can be shown by proving that:

P4. For each n at most one event of the from RF(n,s) exists.

Property P4 can be proved by Induction on n. One consequence of property P4 is that no

two different results can be returned by the above program for the same n.

1'

"Recursive" Linear Fibonacci - 107 - Section 6.1

Since the joining event handler is activated at most onco for each n, the norn'al

exponential behavior of a recursive implementation of the fibonacci function is not

manifested here. In fact, after RF(n,s) Is caused (i.e., after the computation of fibonaccl(n)

has been completed) the results of fibonacci(i) for all O<in are remembered forever and

there is no need to compute them again. Note that the "table" is empty when the program

is started, and is gradually built as the computation proceeds.

The number of events caused when computing fibonacci(n) is at most linear in n,

and in many cases is just one event, L(i). Clearly, we only see here a time space tradeoff; a

faster response is achieved at the expense of storing the results. Each time a

nonrecurrent event is caused, the conceptual list of events from that class has to be

searched in some form or another and the search time is a function of the size of the list. In

order to activate the continuation event handler, the conzeptual list of results (events of

class RF) has to be searched. The above searches can be done In linear time, or, if the

compiler Is smart and implements the event lists In some efficient structure, in less than

linear time; if sufficient storage is allocated the searches can be done in a constant number

of operations. In summary, this example shows how computing functions by tables can be

easily expressed in the language.

6.2 The Readers Writers Problem

The problem of readers and writers was suggested originally In [Co-71] and then

a considered in many papers dealing with synchronization mechanisms; e.g., [Ho-74, Gr-75].

We could not resist the temptation to try to solve the problem in terms of EBL, and this led

* •to some Interesting observations. The first question was whether the problem can even be

"

Section 6.2 - 108 - The Readers Writers Problem

stated In terms of EBL event mechanisms. The problem Involves sharing a database among

readers and writers, and it is not clear at all how to model it In EBL The only scheme so far

presented for creating the effect of mutable objects relies on single use events; however,

if such a solution is adopted here then there is no concurrency at all even among readers.

The reason is that the only way a reader can read a single use event is by using It; after

doing so, the event disappears and the reader has to recreate t?'e event object before

another reader can access It.

Surprisingly enough, multiuse recurrent events can model the desired behavior

of a database. Let us assume the database consists of an array of records; the array will

be represented by an event class Identifier of an appropriate multiuse recurrent type.

The sharing of data among readers can be achieved If each reader always reaids the latest

version" of the appropriate object; i.e., by using the predicate last of EBL. A writer modifies

an item in the database simply by causing an event from that class. The subprograms for

the writers and the readers for this case are shown below:

db: multi-use recurrent event (int, ...); database. The first parameter
is the array index, the following are the record fields)

read: event (int); (for activating the reader handier.
The parameter specifies an array Index)

WRITER:

db (index, ...) wrte a record)
end;

I.

1.

'.l-*

1

The Readers Writers Problem - 109 - Section 6.2

READER:

on read (nd: Int) A db (index: Int, ...) where (indmindex) A last (db)

... (use the read record fields)
end ;

Notice that reading by a reader has no effect on the database. Also, no special

synchronization is required among writers; a writer writes whenever It wants. The action of

writing a record by a writer can be viewed as atomic (as defined for example In [Re-78])

since there is a point in time before which the new record Is not yet written and after which

it is written. This point (corresponding to the commit point of an atomic action) Is the time at

which the event is caused (the corresponding event object is Inserted into the conceptual

event list) and thus becomes the last existing event.

Let us examine the properties of the above solution (i.e., what problem does it

solve?). This is clearly a restricted version of the known versions of the problem since the

database consists of disjoint objects (array records). Other restrictions stem from the fact

that no mutual exclusion Is used. A writer can write several records but each write

operation Is a separate atomic action; It cannot write several records in one atomic action.

Thus, the maximal consistent unit of Information in this scheme is an array record; this is the

reason why a reader reads only one record In each read operation in the above scheme.

Another limitation is that a writer cannot read any information of the database and perform a

write operation all In one atomic action.

!I, The restrictions of the above scheme cannot be ignored. However, there are

applications for which those restrictions are not applicable. More importantly, the solution

has the following Interesting properties: It Is extremely simple, readers and writers can

L L

77"!I
Section 8.2 -110- The Readers Writers Problem

coexist (i.e., maximal concurrency Is obtained), and the delay associated with a read or

write operation Is minimal. Note that if all references to the database In a program use the

above scheme (in particular the predicate last), a clever compiler can decide to implement

the database as an array, or some similar data structure, without keeping +he whole history

of the database (as Implied by the definition of multi-use events).

The next question Is: can the above approach be extended to a less restricted

version of the problem? The answer Is positive; consider now the case in which the maximal

consistent unit of Information read by a reader Is an array record (as In the previous

version). However, a writer can also read several records when entering the database and

leave the database consistent after modifying several records; i.e., a writer can read and

modify several records in an atomic action. The trick here is to create two databases: one,

for the readers, Identical to that of the previous version, and the second, for the writers,

consisting of single-use events which carry the data and provide (only the necessary)

mutual exclusion among the writers.

rdb: multiuse recurrent event (int ...); (readers database. The first
parameter is the array Index, the following are the record fields)

wdb: singleuse recurrent event (int ...) ; (writers database.
The parameters are as In rdb)

read: event (Int); (for activating the reader handler.
The parameter specifies an array Index)

write: event (...); for activating the writer handler specifying
which records to modify)

WRITER:

on write (...)A wdb (... ... A wdb (...) where B
a| (B selects the needed records of the array wdb)

seqcause
rdb . ;rdb first, modify readers database)
wdb (...) ;... ; wdb (...) (next, update writers database)

.. •end;

1.21

k '

The Readers Writers Problem - 11 1 -Section 6.2

READER:

on read (Ind: int) A rdb (index: Int,) where (indmindex) A lest (rdb)

.use the read record fields)
end;

The correctness of this scheme can be easily understood by observing that it basically uses

the two phase lock protocol described In [Gr-78]. This solution is still simple in comparison

to the known solutions to the various versions of the problem. It provides a minimal delay for

readers, which can coexist with writers; and allows several writers to coexist if they

access mutually exclusive records of the database.

Note that the schemes presented above can be modified in several ways. For

example, in order to decrease space overhead wdb can carry only an Index parameter and

not the data Itself; i.e., act as a semaphore array. Also note that the known solutions to the

various versions of the problem can be translated to EBL; we shall not do so since it does

not provide any deeper Insight.

6.3 Airline Reservation System

This section contains an example of a simplified airline reservation system. The

system handles concurrently several flights, each of 100 seats, and recognizes several

requests: Info, which returns the current number of available seats In flight number f;

reserve, which reserves n seats In flight number f; cancel, which cancels reservation of n

seats in flight number f; and Iait, the Initial command specifying the number of flights in the

I. system. Some of the requests expect an answer and this is achieved by passing a

continuation event class identifier as a parameter In the requesting event.

°r

Section 8.3 -12mrie Repervatliu system

moduale (for a&rlin reservations
export: Ifreserve, cancel, kilt ;
Inft am Int Int ; (Integer pair type Idnfer)
ct an event (lntp, bool); continuation type Identifier)
Info: event (hIt, event (lntp));
reserve: event (Intp, ct) ;
cancel, ont: event (lntp) ;
Wit: event (hIt);

on Info (f: mnt, c: event (mt, Int)) A cnt (fl, 1: It) Where tftf
Par-cause

cnt (fi, 1) (do not modify the counter)
c (fl,I1) (send the reply)

end ;

on reserve (f, n: Intt, C: Ci) A cnt (fi, 1: hIt) where tut nd Daun
par-cause

cnt (fi, I-n); decrement the counter)
c (f, n, true) (positive reply}

end ;

oin reserve (f, n; Int, c: Ct) A cnt (fl, 1: Int) where "uf end lKn
par-cause

cnt (fl, 1); do not modify the counter)
c (f, n, false) {negative reply)

end ;

an cancel (f. n: tnt) A cnt (fi, 1: tnt) where fufl
paracause
ad; cnt (fi, l~n) (Increment the counter)

on Ilt (n: kIt) where n0O
Par-cause

mInt (n-) (iterate)
cnt (ni, 100) (100 seats for each 'light)

and ;
end; (of airline cobarvaton moadule)

A counter Is associated with each flight-, this counter Is an event from the class

A. cnt. Each of the counters also provides for mutual exclusion among concu-rent requests for

accessing the data associated with the corresponding flight. The system Is Implemented as

a module In order to protect the Inner event class Identifiers. The structure of the module is

I J

Airline Reservation System - 113 - Section 6.3

simple, and the behavior of its event handlers is self explanatory. The system is of course

simplified and not a realistic one, but It shows the kernel of a possible more realistic system.

EBL's fairness rules (as defined in chapter 2) guarantee that each request is

eventually processed. This program does not attempt to control the order in which requests

are processed. For example, reservations are not necessarily handled In the order they are

issued. In order to get a more fair solution, the where clause of the second event handier

can be changed to:

where (fzfi and I>zn) A first (reserve)

In this case, reservations which can be positively answered are handled on a FIFO basis.

6.4 Disk Head Scheduler

The problem of the disk head scheduler Is presented in [Ho-74]. Basically, the

problem is to reduce the average waiting time of a process wishing to access the disk at

some cylinder. The first suggestion considered there is to select the process wishing to

move the disk heads the shortest distance. This solution Is not accepted there, since a

process wishing to access a cylinder at one edge can starve forever.

The solution shown there minimizes the frequency of changing the direction of the

heads movement, like the behavior of an elevator algorithm. The solution is implemented by

using the monitor construct, and It should not be difficult to express it in EBL. However, let

us return to the original (rejected) solution and see if and how It can be expressed using
I.

each of the following mechanisms: (1) EBL event mechanism, and (2) the monitor construct.

r

... r , 4rn II

Section 6.4 -114- Disk Head Scheduler

in the following EBL subprogram, the requests are represented by events from

the class request. Each process wishing to access the disk causes a request event

specifying the destination, and a continuation event class identifier. The continuation event

is caused by the scheduler when it decides to select the process. When the process

decides to free the disk, it causes an event from the class release, which contains the

current heads position.

request: event (int, event (Int)) ; { parameters: destination and continuation)
release: event (int) ; { the parameter is the current heads position)

on release (headpos: Int) A request (dest: int, c: event (Int))
where min (abs (headpos-dest))

per cause c (dest) allow the process to continue)
end;

on program start
par .cause release (0) (initial heads position)

end;

As can be seen, the whole scheduling algorithm is Implemented by one trivial event handler

and an additional initialization. In order to Implement such an algorithm using the monitor

construct, some data structure must be added for keeping the destinations of the waiting

processes; in addition, a monitor procedure for searching the data structure In order to

select the next request must be explicitly written, and the solution is not elegant. The

scheduled waits, which are used in [Ho-74] In his solution to the original problem, do not

contribute anything to the problem we consider here.

Let us analyze the reasons for the difference in the ease of expressing the

algorithm in the two cases. The first, and seemingly obvious reaon is the existence of the

predicate min in EBL. However, the scheduled waits offer a similar mechanism: choosing the

.b. •waiting process having the maximal priority (minimum value of a parameter associated with

12. i I I :.

" - - ' - .-.. ..

Disk Head Scheduler - 118 - Section 6.4

the waiting process); therefore, this reason is not so clear.

The second reason, the difference between EBL's min predicate and the

scheduled waits, Is the fundamental one. The scheduled waits mechanism allows

associating a priority with the waiting process; however, this priority is evaluated when the

process is suspended (when executing a wait statement) and cannot be modified

dynamically. Scheduled waits can be modeled in EBL by using the min or max predicates;

however, In EBL, the priority of a waiting process (a requestor in the example) is evaluated

dynamically (in the where clause) and is more powerful. Now it should be clear why the

scheduled waits cannot be used to solve the problem considered here.

The example In this section suffers from the possibility of starvation. Several

comments can be made on this. First, the problem can be eliminated by constructing a

slightly more complicated scheduler that makes use of an additional parameter of each

request: a parameter obtained by reading the latest tick value. Clearly, this is yet another

scheduling algorithm, but there is no other choice since the starvation possibility Is Inherent

in the algorithm and is not caused by choosing one mechanism or another. Second, our

purpose has not been to justify the algorithm but rather to use it as some concrete example

In the above discussion.

t6.6 The Five Dining Phllosophers

The problem of the five dining philosophers was presented in EDI-71]. it involvesI.
five philosophers spending their time in infinite cycles of eating and thinking. The

philosophers sit at a round table and there is one fork between every two adjacent

philosophers (total of five forks). In order to eat, each philosopher needs the fork to Its left

'1° _.

r_ . ."

Section 6.5 - 116T- ho Five Dining Phlokophers

and the fork to Its right. The above paper shows how deadlock can arise when solving the

problem by using semaphores. A possible solution In terms of EBL Is:

F: event (Int) ; (forks class)
P: event (let, let); { philosophers class)

on P (if, rf: Int) A F (I: Int) A F (j: Int) where ,f-i and rf-j
seq-cause

(eat);
F (f); (free left fork)
F (rf); (free right fork)
(think);
P (If, rf) (iterate)

end ;

on program-start
par cause

(create (start) the five philosophers)
P (1,2); P (2,3); P (3, 4); P (4,5); P (5, 1);

(create the five forks)
F (1) ; F (2) ; F (3) ; F (4) ; F (5)

end;

The above solution is deadlock free since It basically makes use of multiple P

operations. Actually, a class of philosophers, all executting the same event handler, has

been created. As Implied by the problem, the order In which the philosophers are selected

for restarting their cycles Is not defined; however, the solution can be easily modified to be

more fair by changing the where clause of the first event handler to:

where (Iffl and rfuj) A first (P)

In this case, if philosopher P is selected for restarting Its cycle, P is the longest waiting

philosopher among all philosophers which are currently waiting and both-of-the forks they

need are not in use.

1~4.

i O i EI .. .r- - nn:

Summary -117- Section 6.6

6.6 Summary

This chapter and the previous one have explicitly dealt with the expressive

power of EBL. The previous chapter has shown how variables can be implemented in terms

of single_use events. This chapter has shown another way to implement shared mutable

objects; this time in terms of multi use events. The power and the roles of some of EBL's

predicates have been demonstrated. It seems that synchronization problems and Problems

involving resource allocation are especially easy to solve in EBL.

I.

,b,

.. ...1a IBI --. _ : ;

Section 7 - 118 - Virtual System Implementation

7. Virtual System Implementation

The purpose of this chapter Is to investigate Implementation schemes which are

natural to the language. A system with virtually unlimited computational resources will 13e

selected as a concrete example. This investigation is not useless sin:ze, as will be seen in

the following chapters, its results can be easily adapted to more realistic computer systems.

In some places in this chapter the existence of unlimited computational resources Is not

exploited since the purpose is to develop schemes which can be employed in reality (after

some adaptation).

7.1 Overview

This chapter assumes a virtual system having an architecture of a fully

connected processor network with unlimited computational resources (processors,

processors' local storage, and link capacity). An attractive implementation on such a

system associates an event class manager ECM, with each event class Identifier In the

program, and an event handler manager EHM, with each event handler. Each manager is

assigned to a distinct processor.

An ECM is responsible for events from the corresponding event class. It

maintains the event objects in an event list which may be (but not necessarily) Implemented

as a linked list. Whenever a new event is to be caused by some Instance of an event

handler the corresponding ECM receives the event object and Inserts it Into Its event list.

It then may broadcast a message to all the relevant EHM's to check whether they can now

find new matching event collections.

1.,

r . - |" • . . -

**. .o.- -

Overview - 119- Section 7.1

An EHM is a cyclic process that repeatedly tries to find new matching event

collections. It does it by scanning the relevant event lists, by exchanging messages with

the corresponding ECM's. When it finds a matching event collection it must verify that the

singleuse events in the collpction have not been used so far (i.e., they still exist) and can

be used by It, all In an atomic action called the acquisition. Then It can activate a new

Instance of the event handler, by allocating a new processor for this task.

An activated instance of an event handler has to evaluate parameters and to

cause events. Since there is a lot of concurrency to be exploited even within a single

instance of an event handler, new processors will be allocated as needed to achieve a high

degree of parallelism. When an event object is built, a message Is sent to the

corresponding ECM, which inserts the object into Its event list. The managers and the

instances of event handlers communicate with each other by exchanging messages. The

messages are either requests (e.g., "insert an event object into a list"), or replies (e.g.,

where Is the next list element").

One of the tasks of an EHM is the acquisition of single-use events in a matching

event collection. The problem is akin to that of locking of objects In a distributed database,

and a two phase acquisition (locking) algorithm can be employed. As in many existing locking

algorithms deadlocks can be prevented ?n our case by defining a total order on all objects to

be locked. The drawback of this approach is that objects are locked sequentially. A

I° scheme In which deadlocks are prevented by using a partial order on all object classes

(event classes) is developed in this chapter. The advantage of this scheme is that objects

can be locked by a requestor (an EHM) concurrently, thus the acquisition action can be

completed faster.

Section 7.1 - 120 - Overview

The EHM algorithm is described in this chapter in terms of a conceptual tool: the

event space. Ole event space is associated with each event handler ire the program. Each

of the n axes of an event space ranges over all existing events from one of the n event

classes defined by the event descriptor list of the event handier. Event collections can be

represented as points in the n dimensional event space. Each event space changes

dynamically and the role of the corresponding EHM is to continually check whether points in

the event space correspond to matching event collections.

The behavior of an EHM is determined by two orthogonal properties of the

corresponding event handier. The first property is the existence of single-use event class

identifiers in the event descriptor list. If the event descriptor list contains at least one

event class identifier of a singleuse type the event handler is a singleuse event handler,

otherwise it is a multiuse event handler. The second property is the existence of

predicates in the where clause of the event handler. According to the above properties

there are 4 different cases:

Case 1: A multi-use event handier without predicates in its where clause.

Case 2: A single-use event handler without predicates in its where clause.

Case 3: A multi-use event handler with at least one predicate in its where clause.

Case 4: A singleuse event handier with at least one predicate in its where clause.

In all above cases, an EHM begins a search for matching event collections after

receiving a message from an ECM (sayirg that a change in its event list has occurred). In

cases 1-3, the EHM only checks new points in its event space whereas in case 4, in

general, the whole event space has to be searched. In cases 1 and 3, once a matching

event collection Is found an instance of the event handler Is activated by the EHM. In

1 ,*, ..-

Overview - 121 - Section 7.1

cases 2 and 4, however, the EHM has first to acquire the single-use events in the event

collection (by the acquisition algorithm) and only then it activates an instance of the event

handier.

Before an EHM begins a search for matching event collections it has to find the

current boundaries of its event space. These boundaries consist of the current boundaries

of all the relevant event !ists. The action of finding the boundaries cannot be Implemented

as a sequence of actions reading the needed values since a set of values inconsistent with

each other may be obtained (examples are given in section 7.7). The boundaries must be

sampled at exactly the same point in time. An implementation of such an action in a

distributed system without any centralized control Is not trivial. Strategies based on locks or

timestamps can be employed.

An implementation of EBL must guarantee the language fairness rules. The

fundamental idea in guaranteeing the fairness rules Is that each EHM should detect a case

In which It could use an event in many opportunities but it failed due to contention with

other EHM's. When an EHM detects that it failed It acts to reduce the likelihood that it falls

in the future. It increments a counter (a failure counter) associated with the EHM and the

ECM whose event is a reason for the failure. Each ECM knows the values of the relevant

failure counters. Therefore, It can give a higher priority to requests associated with the

EHM whose counter has the highest value.

In the general case, an event list can be Implemented as a doubly linked list. In

certain cases, however, optimizations can be made. In some cases an event list can be

.. •replaced by a counter and in others by a record variable. Sorting an event list can result In

mu ".

Section 7.1 - 122 - Overview

a better performance In certain cases. These optimizations and others are discussed In a

section 7.12.

The rest of this chapter further develops the Ideas discussed In this section.

7.2 The Virtual System

The virtual system consists of a very large number of processors; each

processor is directly connected to all the other processors, and Is equipped with unlimited

local storage. The processors are organized by some mechanism In a free processor pool.

Whenever a processor is needed for some computational task, It can be Immediately

obtained from the pool. When the task is complete, the processor is returned to the free

processor pool.

The links connecting processors are of a very high speed (unlimited capacity), a

very low propagation delay, and no overhead is associated with sending (receiving)

messages through them. Thus, the cost of communication between program objects residing

on different processors is zero. This property of the system encourages the allocation of a

distinct processor for each task in order to achieve good time performance.

It Is Important to nbserve that the above view of the sy. tem does not restrict

the applicability of the analysis In this chapter to a network of processors communicating

through communication links; the results apply also to a multiprocessor system containing a

shared memory. The main difference Is that In the latter case, program object A residing on1.!
one processor can access the local data of program object B residln, on another processor

without bothering B (as long as undesired interferences do not occur) and thus better

*b

The Virtual System - 123 - Section 7.2

performance can be achieved, unless the -shareid memory becomes a bottleneck.

In this system, once an object (such as a manager, an instance of an event

handier, or an event object) is assigned to a processor there is no need to move It to

another processor (although it may be copied to other processors). Thus, objects can be

addressed by processor number plus some additional unique identifier. In the sequel P(O i)

denotes the processor on which object 0i currently resides. The EHM associated with

event handler H Is denoted by M(H); similarly, the ECM associated with event class

Identifier E is denoted by M(E).

7.3 The Event Handler Manager

The role of an EHM is to repeatedly try to find new event collections which match

the event handler heading. For each such collection to acquire the sinle use events in the

collection (perform the acquisition action defined earlier), and then to activate a new

Instance of the event handler. Before one designs an EHM algorithm answers should be

given to the following questions-

1. At which points during the course of the computation should an EHM start

searching for new event collections?

2. How and whether an EHM should keep Information saying for which event

collections the event handler has already been activated?

3. Is it sufficient for an EHM to check whether an event collection Is matching once,

or can It happen that at one point In time an event collection does not match, and

later it matches an event handler heading?

4. How does an EHM acquire the singleuse events in a matching event collection?

1 .

" ,

Section 7.3 - 124 - The Event Handier Manager

Can deadlocks occur?

The first question is discussed below. in a system like our virtual system, in

which processing power is unbounded, or if time performance is of no importance, an EHM

can be implemented as a process which continually checks whether there are new matching

event collections. However, since the purpose of this chapter is to introduce schemes that

can be easily adapted to real world systems, we shall not accept such a scheme.

The above scheme is time consuming, and it ignores the special semantic

properties of the language which allow fulfilling the EHM role much more efficiently. There is

no need to search for event collections unless there is a change in at least one of the

event lists associated with event class identifiers appearing in the event handier heading.

Not every change should be considered. For an event class Identifier appearing in the

event descriptor list, only insertions of new event objects are relevant. For an event class

Identifier appearing as an argument of an exist (none) predicate, the search should start

only if the list changes from an empty (not empty) list to a not empty (empty) list. Since the

managers of a given program are fixed and known at compile time, an ECM can signal a

known fixed group of EHM's whenever a relevant change occurs in its event list. This signal

is broadcast by the ECM to the relevant EHM's. If the event class identifier appears In the

headings of n event handlers then at most n ECM's should be notified when the event list

changes.

The answer to the second question depends on the types of the event class
K

Identifiers in the event descriptor list. If there is at least one event class identifier of a

single use type, I.e., the event handier is a singleuse event handler, there Is no need to

1'a

The Event Handler Manager - 125 - Section 7.3

keep Information saying for which event collections the event handler has already been

activated; the reason Is that the singleuse events in such event collections are forgotten.

If all event class Identifiers are of multi use types, I.e., the event handler Is a multuse

event handler, the Information Is needed. A way for keeping the Information is described in

section 7.6.

The answer to the third question depends on the existence of predicates In the

where clause. If there are predicates, an event collection that does not match the event

handier heading at one point In time may match at another point In time. If there are no

predicates, this cannot happen. A way for keeping information about event collections

which should be revisited is described in section 7.6.

7.4 The Acquisition Algorithm

The fourth problem of the previous section, acquisition of the single-use events

of a matching event collection, poses a difficulty. On one hand, the acquisition should be an

atomic action; on the other hand, several EHM's may wish to acquire the same object. The

problem arises since EHM's operate concurrently in a distributed system without any

centralized control. The problem is akin to that of locking objects needed by a transaction

In a distributed database system, but It Is simpler due to several reasons. First, in our case

locked objects (single use events) are never unlocked. Second, If an EHM finds that an

object It wishes to lock is already locked it aborts the attempt to lock the object and it

never needs to lock this object again. Third, In our case the requestors (EHM's) are fixed,

and each of which tries to lock objects from a fixed group of object classes.

1. ,

r . 4

Section 7.4 - 126 - The Acquisition Algorithm

The problem can be solved by a two phase acquisition algorithm which is

reminiscent of the two phase commit protocol of [Gr-78]. in the first phase, the booking

phase, the EHM requests the relevant ECM's to mark the singleuse events as booked. If

the first phase succeeds, i.e., all needed objects are successfully booked, the second

phase in which the EHM requests the ECM's to mark the events it has previously booked as

acquired is entered.

If In the booking phase an EHM is notified that an object it tries to book is

already acquired, the EHM frees all objects it has successfully booked and aborts the

algorithm. If a booked object is found, the acquisition algorithm is suspended until the

object is either freed or acquired. In order to successfully acquire n objects an EHM has to

send at most 2n messages, assuming each ECM keeps suspended requests. The above

algorithm Is susceptible to deadlock. A deadlock can involve only EHM's executing the first

phase of the acquisition algorithm since in the second phase, the needed objects are

already booked and therefore out of the contention.

In general, deadlocks among requestors of resources can be treated In one of

the following ways [Ch-74b]:

1. Detect deadlocks after they occur, then cure the problem, e.g., by pre-empting

resources in a way which breaks the deadlock.

2. Avoid deadlocks by forcing each requestor to request all the resources It needs

in advance. Only requests which do not lead to deadlock are granted.

3. Prevent deadlocks. In this case, deadlocks cannot occur due to the underlying

system algorithm.

It

The Acquisition Algorithm - 127 - Section 7.4

in our case, dead;ocks can be prevented in most cases If all EHM's adhere to the

following booking rule:

01. Objects are booked sequentially one at a time in an order preserving a global

order (chosen by the compiler) on all event class identifier In the program.

The only case not covered by the above rule is that of more than one event handler each

containing the same event class Identifier of a singleuse type in more than one event

descriptor In its event descriptor list. One way to prevent deadlocks in this uncommon case

is by adding the following rules to the corresponding EHM's:

B2. Every distinct single use event In the event collection Is booked at most once.

This takes care of an event collection containing-the same evernt more than once.

B3. Events from an event class are booked according to some fixed order on the

event objects in the event list. An example of such an order is the order of

insertion of the event objects into the event list (which is not necessarily

Identical to the order of the events In the event list)

Another way is to replace rule 03 by:

83'. All events from the same event class are booked by the EHM in one request,

executed as an atomic action by the ECM.

Since such a multiple book request is processed by one processor (on which the ECM

resides), its implementation poses no problems.

Similar algorithms for locking objects, which do not prevent deadlocks (in the

sense defined earlier), normally use some aging mechanism (e.g., timestamps) in order toI.
prevent a requestor from waiting forever due to retries (e.g., after pre-emptions) [Ch-74b,

Ba-78, St-78b]. No such mechanism is needed in our case since there are no retries. The

Jr-

Section 7.4 - 128 - The Acquisition Algorithm

problem of requestors waiting forever does not occur if, for example, each ECM fulfills book

requests in a FIFO order (except when requests are suspended).

One should observe that the booking algorithm prevents deadlocks by defining a

total order on classes of resources amid not on the resources themselves. The number of

those classes is fixed and known to the compiler, whereas the number of the resources In

each class is in general unbounded. EHM's executing the second pnase of the acquisition

algorithm cannot be involved in deadlocks thus they can acquire all needed objects

concurrently. The combined acquisition algorithm Is therefore deadlock free.

A drawback of the previous acquisition algorithm is that objects are booked

sequentially. This restriction (defined in rule B1 earlier) is sufficient for preventing

deadlocks (except for the cases covered by rules B2, and B3 or B3') but can be relaxed as

shown In the rest of this section. The semantics of the language can be exploited to allow

concurrency In the booking phase. In a general problem of requestors locking objects, the

objects are dynamically selected and may be data dependent. In our case however, the

classes of objects required by each requestor (EHM) are known in advance (at compile

time). Our scheme can be applied to any case where a fixed number of requestors book

objects from a fixed number of object classes; the object classes are disjoint and each can

change In time. Each requestor books objects from a fixed set of object classes; one or

more disjoint objects from each class. The scheme will be described in these general terms

(the corresponding terms In our case appear In parentheses).
I.

Let G = (NR, NO; A) be a bipartite undirected graph defined as follows: Every

requestor (EHM) is represented by exactly one node Ri In NR, and every object class (event

1'

The Acquisition Algorithm - 129 - Section 7.4

class Identifier of a singleuse type) is represented by exactly one node Oj In N0 . The set

of arcs A contains exactly one arc connecting Ri and Oj If Ri locks objects from object class

Oj. An example of such a graph is given In Figure 7.1. Since G is a bipartite graph every

cycle C in G contains an even number of nodes 2m and has the form (Rpo, Oqo , Rp 1 , Oq 1 .

Rpm1, Oqm_I). Every cycle in G is a potential for a deadlock. However, since each O1

represents a class of objects, a deadlock may happen only If for every path (Rp , Oq , R p)

In the cycle, where J=(i+l) mod m, Rpi and Rpj try to lock the same object from class Oqi. in

such case a deadlock exists, for example, when Rpi has successfully locked the object

from class Oql for i=0, m-1. (This is reminiscent of the possibility of deadlock In the five

dining philosophers problem [DI-71 J.)

R 0 0R I

a 7

Figure 7.1 The requests graph G

In general, G Is a disconnected graph consisting of several connected

components. G can be separated to its n biconnected components (in the articulation points

of each of its connected components); appropriate (polynomial time) algorithms can be

found, e.g., In [Re-77b]. Let S1 , S 2 . S n be the sets of object classes corresponding to

the n biconnected components. For every I, j I#j the set Sillsj is either empty or contains
II

exactly one element. The articulation points for G of Figure 7.1 are nodes R2 , R, 05, and

07; and the sets of object classes are Si 2(00, 05), S2(01, 04, 06}, S3 0(0 2 , 03, 07),

/ i

Section 7.4 - 130 - The Acquisition Aigotthm

34=(o 0#3), and $6-(07, 09).

Let G' = (N's, N'O; A') be the reduced bipartite undirected graph of G defined as

follows: Every set Si is represented by exactly one node in N' S . If SinSi = (O0 then Ok is

represented by exactly one node in N'O; this node is connected by exactly one arc to SI,

and by exactly one arc to S6. From the construction of G' It Is clear that it is acyclic. The

reduced graph for G of Figure 7.1 is depicted in Figtire 7.2.

3 1T 2! s 3T

02 6 0

Figure 7.2 The reduced graph 6'

In order to prevent deadlocks It is sufficient to define a total order on the

elements (object classes) of each Si and not on all object classes (all event class

identifiers of the program). The union of these total orders defines a partial order P on the

set of all object classes; the fact that the graph corresponding to P contains no cycles

stems from the fact that G' is acyclic. A possible partial order for the reduced graph of

Figure 7.2 is shown In Figure 7.3.

0 8 0 4 o3

o
01

02

9

Figure 7.0 A partial order P on object classes

1.

r' -

The Acquisition Algorithm - 131 - Section 7.4

Rule B1 can be replaced by the following relaxed rule:

61'. Objects are lockeo (booked) by a requestor (EHM3 in any partial order P'

consistent with P; i.e., object class 01 precedes object class Oj In P Implies

locking an object of class Oi precedes lockinq sn o' Ject of class Oj in P'.

Unordered locking operations can be executed concurrently.

In the relaxed locking (booking) rule, objects from distinct classes belonging to different

sets Si , Si can be locked concurrently. In our example, requestor R2 can lock objects from

class 00 then lock objects from .:Iass 0, and concurrently with these operations lock

sequentially objects from classes 01, 04, and 06. In the relaxed scheme, the number of

messages an EHM has to send in order to successfully acquire n objects Is still at most 2n

but the acquisition action can be completed faster due :o concurrency In the algorithm.

Rule B1' specifies a sufficiet.t condition for preventing deadlocks (together with

rules 82, and B3 or 83' appropriately restated in the more general terms) but it is not a

necessary condition. The reason Is that nodes in No represent classes of objects and not

objects. For example, in our case, if both H1 and H2 use events from two classes E1 , E2

but H1 specifies even parameters (in Its where clause) whereas H2 specifies odd

parameters, ordering of E1 and E2 is not required whereas the above scheme orders them.

Extending our scheme to cover such cases requires decision whether two boolean

expressions (In where clauses) are mutually satisfiable. Unfortunately, the problem whether

two general boolean expressions, whose terms contain relations between Integer

I, *expressions (containing the operators +, -, ,, ar.d/), are mutually satisfiable Is undecidable.

r

1 h.

i "

Section 7.5 - 132- The Event Space

7.5 The Event Space

Before the various cases of the EHM algorithm are described, several terms will

be introduced. Let n be the number of event class identifiers in the event descriptor list of

an event handler. Each collection of events appropriately associated with the event class

identifiers can be represented as a point in an n dimensional space, the event space, whose

axes represent the n event class identifiers. Each axis ranges over all existing events from

the corresponding event class (and not over all possible events from the class). One event

space is associated with each event handler.

Fvant spaces change dynamically: An event space associated with a multi-use

event handier cannot shrink in time. An event space associated with a single-use event

handier H can grow and shrink in time since a part of t!ie event space Is deleted each time

a single use event of one of the event classes in the event descriptor list is used by some

event handier (not necessarily by H). In the sequel, the part of an event space obtained by

selecting along each axis only points between the origin and some fixed point is called a

rectangular event subspace. The term event subs: ice Increment is used when referring to

the part of an event space obtained as tho (set) difference of two rectangular event

subspaces, one containing the other. The term event subspace Is used in the general sense

of a part of an event space. The EHM algorithms can be described and can be easily

visualized in terms of event subspaces. As an example consider the following event handler

heading:

on E1 (...) A E2 C...) where ...

Figure 7.4 depicts the corresponding event space at a point In time at which 7 events from

class E1 exist and 8 events from class E2 exist. The events are marked by x's on the axes
.

•

The Event Space -133- Section 7.5

In Figure 7.4; each of the 42 dots represents an event collection. The dashed line 1-1'

(2-2') and the two axes define a rectangular event subspace containing 6 (25) event

collections. The dashed lines 1-1', 2-2' and the two axes define an event subspace

increment containing 19 event collections.

E 2'

2

E'
11 21

Figure 7.4 An event space

7.6 Finding Matching Event Collections

This section deals with the part of the EHM algorithm for finding new matching

event collections. There are four cases according to the answers given to questions 2 and

3 of section 7.3.

7.6.1 Case 1: Multi-use Event Handler without Predicates

This case deals with a multi-use event handler without predicates In its where

clause. Since there are no predicates there Is no need for visiting a point in the event

space more than once. Therefore, some way for covering the nonshrinking n dimensional

event space is needed. Some diagonal order could be used but at each step n messages

should be sent, one for each of the n ECM's, for finding the next event collection to be

checked. An algorithm which always covers an event subspace Increment by proceeding

1_

Section 7.8.1 - 134 - Case 1: Multi-use Event Handler without Predicates

row by row, within each row column by column etc. in the matrix corresponding to the event

space, is simpler and more efficient. At each step a message for only one ECM is needed

except on the event subspace boundaries (e.g., when a new row Is started).

The event space is only a conceptual tool. There is no need to actually build a

matrix which corresponds to the event space (whose elements are event collections) and

thus keeping the information about the event space points in memory. The needed

Information is easily obtained from the relevant event lists by keeping two references to the

current boundaries within each event list and a reference to the currently checked event

from that list.

Each time the EHM starts the search for matching event collections the

previously searched #ectangular event subspace Is expanded along one dimension to the

current boundary of the event space In that dimension. All the points added to the

rectangular event subspace by this expansion (adding an event subspace Increment) are

checked and instances of the event handler are activated as necessary. This procedure is

repeated for all n dimensions. At the end, a flag called the restart flag is tested to see

whether messages (from the relevant ECM's) indicating that new events occurred, have

been received while the EHM was performing the search. If the restart flag is set the EHM

restarts the search, otherwise the search is suspended unti such messages arrive.

Let us examine the number of messages M, an EHM has to send in order to cover
i.

an event subspace increment. The number of messages required on event subspace

boundaries becomes less significant as the number of events in the n event lists increases;

thus, these messages are ignored In the sequel. Let Ni be the number of existing events In

z ', --~-

Case 1: Multiuse Event Handier without Predicates - 136 - Section 7.6.1

event list i when the previous search began, and di be the number of events added until the

current search started. The number of EHM messages neded for covering the event

subspace increment is M = H (Ni+d i) - Ni; i.e., the number of event collections in the

event subspace increment. If only one event list (k) has changed then

M = dk max (H Ni, 1). The max takes care of the case in which n=1.

ilk

M can also be written as M = - Ni(F" (1 If for all i- << , as is the
I I Ni Ni

case when the event lists grow (Ni increases) and the EHM responds fast enough to

changes in the event lists (di is small) then M can be approximated by M = ! N Z . If for
Ni

all i Ni=N then M = Nn-l : di; if in addition, for all i di=d then M = Nn -1 nd.

The efficiency of an EHM can be improved by allocating more than one processor

for the event subspace search. A possible way is that the EHM allocates several slave

processors for this task and assigns a disjoint part of the event subspace increment to

each of them. For example, in case of a two dimensional event space each slave processor

can be assigned a row in the corresponding matrix. Coordination among the slaves is

required especially when predicates exist in the where clause of the relevant event

handler.

7.6.2 Case 2: Single_use Event Handler without Predicates

This case deals with a singleuse event handler witlout predicates in Its where

clause. The rectangular event subspace and the scheme for covering It can also be used in

this case. Whenever an event collection is selected for activating an instance of an event

handler its single-use events are forgotten; therefore, the event space does not contain

any point associated with a selected (used) event collection. The covered part of the

/

Section 7.6.2 - 136 - Case 2: Singleuse Event Handier without Predicates

rectangular event subspace represents event collections which did not match (and

therefore will never match) the event handler heading.

When a matching event collection is found its single use events are acquired by

the two phase acquisition algorithm described earlier In this chapter. An instance of the

event handler is activated if the acquisition succeeds. When an event is acquired it

cannot simply be deleted from the event list since references to It can exist in various

;.ianagers. A scheme for handling this difficulty is suggested in section 7.9.

Let N'i be the number of existing events in event list I when the previous search

began. During the previous search some of these N'i could be used (by this EHM or by

others). Let N"i (N"iN'i) be the number of existing events remaining from the N'i events

when the previous search ended. Between the end of the previous search and the

beginning of the current search some of the N"i events could be used (by other EHM's). Let

Ni (Ni<N' 1) be the number of existing events remaining from the N', events when the current

search begins. For a multiuse event class identifier N'i=N"i=Ni; this is the reason why the

distinction between these 3 values is not needed in casp 1. Let di be the number of events

added to event list i after the beginning of the previous search which are existing at the

beginning of the current sear'h.

In this case, the number of EHM messages M needed for covering the event

subspace Increment containing the event collections added between two consecutivei
searches is at most HT (Ni+d 1) - 1 N1. The reason for the Inequality Is that whenever a

single use event participating in an event collection in the event subspace increment Is

used, a part of the event space is deleted and it may not be needed to check some of Its

Case 2: Single use Event Handler without Predicates - 1 37 - Section 7.6.2

event collections.

In order to find out how many event collections D are deleted from the event

subspace increment when a single use event Bk from event list k is used the following

algorithm can be applied.

1. If ek is in the group of dk added events then D = max (I (Ni+di), 1):
iik

set dk=dk-1 for later applicai-3ns of this algorithm.

2. If Bk is In the group of Nk events remaining from the previous search then

D = r- (Ni+d) - H- N; set Nk=Nk-1 for later applicitions of this algorithm.
l#k Ik

The decrease in M resulting from the above even collections deletion depends on how many

of these event collections have already been checked; the decrease can vary from 0 to D.

The decrease can be D only if ek is used by another EHM. If ek is used by this EHM then the

decrease can be at most D-1.

7.6.3 The Effects of Predicates

One of the effects of predicates is that an event collection that does not match

the event handler heading at one point in time may match it at a later point in time. This may

lead to an inefficient algorithm which repeatedly cheCks the same event collections.

However, a deeper examination of tha nature of EBL's predicates reveals that this can be

avoided in many cases. This section analyzes the effects of the predicates exist and

none; the results hold both for a multi-use event handler with predicates and for a

single-use event handler with predicates. The effects of the other predicates are

analyzed in the following two subsections.

Section 7.6.3 - 138 - The Effects of Predicates

Two trivial cases can be easily eliminated by the compiler. In the first case, the

argument of an exist predicate also appears in the event descriptor list; in such case, the

predicate can be eliminated from the where clause without changing the program behavior.

In the second case, the argument of a none predicate also appears In the event descriptor

list; in such case, the whole event handier can be deleted without changing the program

behavior since no event collection will ever match Its heading.

Thus, we can assume that the argument of an exist (none) predicate Is an event

class identifier which does not appear in the event descriptor list. This Implies that the

values of these predicates do not depend on the checked event collections and therefore

they can be evaluated before searching of the event subspace Increment is started. It is

true that while the event subspace is being searched the values of these predicates may

change but since the checking itself has no side effects on the values of the predicates

(even when the argument is of a single use type) the algorithm can proceed as if the

search of the whole event subspace is done Instantaneously (in zero time). Before the

search of the current event subspace increment is started the exist (none) predicates are

evaluated and only if they are all satisfied the search begins.

There are cases In which additional information can be obtained from evaluation

of the predicates:

1. If the argument of an exist predicate Is of a multi-use type and the predicate is

satisfied once, it can be eliminated from the where clause since from now on it

will always be satisfied.

2. If the argument of a none predicate Is of a multiuse type and the predicate is

not satisfied once, the EHM with all the associated Information can be deleted

The Effects of Predicates - 139 - Section 7.6.3

and the computational resources it holds can be released, since the event

handier will never be activated afterwards.

7.6.4 Case 3: Multi use Event Handier with Predicates

This case deals with a multiuse event handier with at least one predicate in its

where clause. The most important observation in this section is tha' once a rectangular

event subspace has been searched and the matching event collkctions have been found,

there is no need to search this event subspace again. 1his might seem somewhat

unreasonable but the following analysis of the nature of EBL's predicates shows that the

observation is true. The previous section suggested a scheme for handling the predicates

exist and none; this scheme does not involve revisiting points in the event space.

The next important observation is that the remaining predicates all have the

flavor of minimizing (maximizing) some value. The min (max) predicate does it for an integer

expression, and the first (last) predicate does it for the index of the event In the event list

(assuming that an event list is ordered according to the arrival order of its objects).

If at one Iteration (search) of the EHM all matching event collections of the

rectangular event subspace checked at that time are found, then at later Iterations no new

matching points In this event subspace can be found. This follows from the aptimizing nature

of the predicates, from the fact that event collections selected in previous iterations are

still there (since all events are of multi_use types), and from the fact that the event
I.

objects are immutable. This is the reason why in this case tnere is no need to check an

event collection more than once.

,1,

Section 7.6.4 - 140 - Case 3: Multi-use Event Handier with Predicates

Thus, each time the EIM starts a search the points In previously searched

rectangular event subspaces need not be revisited. Moreover, depending on the predicates,

not all new points in the event subspace increment need be checked. For example, If the

where clause is where first(E) and ,a matching event collection has already been found

(containing event e from class E) in an earlier searcn, there is no need to consider new

events from class E since they must have been preceded by e. Similarly If the where

clause Is where last(E) and d events have been added to event class E since the previous

search, only the latest one need be checked.

The rectangular event subspace and the scheme for covering it as described In

case 1 can be used In this case with some additional Information. In the most general case

In which the where clause contains several instances of each predicate, we need to keep

for each first (last) predicate the Index of the most recently selected event (or reference

to that event object if Indexes are not directly available), and for each min (max)

predicate, the latest minimum (maximum) value. No Information should be kept for the

predicates exist or none.

While examining points in the event subspace Increment the arguments of min

(max) predicates are evaluated and the values are compared with those kept from previous

searches. Similarly, indexes can be compared for first (last) predicates. However, since In

general the event lists are not Implemented as contiguous arrays, the Index Information Is

not available Implicitly easily. There Is no need in keeping this Information explicitly withinI.
the event objects. For example, If an event list is Implemented as a doubly linked list

references to the event objects can be kept (instead of Indexes), and by comparing event

object references to those kept the same results can be obtained.

'Ii

-.

r,4 ." "? m m m

Case 3: Multiuse Event Handier with Predicas'i - 141 - Section 7.6.4

In this case, the number of EHM messages M needed for covering the event

subspace Increment containing the event collections added between two consecutive

searches Is at most - (Ni+d i) - H N1 (where N, and di have the same meanings as in case
i i

1); I.e., at most the number of event collections in the event subspace Increment. The

inequality stems from cases (such as those described earlier) in which not all new points in

the event subspace Increment need be checked.

The above bound on M assumes that the EHM keeps pointers to all the points in

matching event collections (having optimum values) in the event subspace Increment during

the search. After the search Is completed Instances of the event handler are activated.

Another approach, in which the EHM only keeps the optimum values, requires a second

search of the event subspace increment. In the second search, event collections

corresponding to the optimum values found In the first search are looked for.

7.6.5 Case 4: Single_use Event Handier with Predicates

This case deals with a single-use event handier with at least one predicate in Its

where clause. The main difference between this case and case 3 is that here, once an

event collection is selected and its aingleuse events are used, a part of the event space

Is deleted and event collections that did not match the event handler heading In the past

may match the heading now. (For example, an event may satisfy a min predicate after an

event with a smaller parameter value is used.) It follows that In the general case points in

the event space must be revisited.

.'h

1'

,r

Section 7.6.5 - 142 - Case 4: Single_use Event Handier wIUS Predicates

The concept of the rectangular event subspace can be used here alo Eah

time the EHM starts an Iteration, the boundaries of the current event space are found (only

points In this rectangular event subspace are checked In this Iteration), and the exist end

none predicates are evaluated as in case 3; only If they are all satisfied the search begins.

During the search event collections are checked as in case 3. One difference, however, Is

that here the whole rectangular event subspace Is searched and not only the event

subspace Increment, In contrast to case 3. Once a matching event collection Is found it Is

treated as in case 2. After an instance of the event handler is activated and a part of the

event subspace Is deleted, the search of the remaining part of the (previously found)

rectangular event subapace should restart in the general case.

Let N, be the number of existing events in event list I when the current search

begins. The number of EHM messages M needed for searching the rectangular event

subspace until a matching event collection is found is at most FT Ni . One reason for the

Inequality is that In many cases an optimum may be found without searching the whole

rectangular event subapace. Another reason is the deletion of parts of the rectangular

event subspace If relevant singleuse events are used by other EHM's. In order to find out

how many event collections D are deleted from the rectangular event subspace when a

singleuse event ek from event list k is used, the following algorithm can be applied:

0 z max ([NI, 1); set Nk-Nk-1 for later applications of this algorithm.

ilk
If Ok I8 used by another EHM then M is decreased by at most D.

In spite of the above, there are Important cases in which there is no need to

restart searching the rectangular event subspace and the search may simply proceed.

First, observe that the predicates exist and none have nothing to do with restarting the

"1 ',

I, - -

Case 4: Singleuse Event Handler with Predicates - 143 - Se@tm 7.6.

search; their treatment was analyzed earlier. If there are no ml. or max predicates, Le., if

the where clause contains any combination of the predicates: first, lest, exist, and none

the order of the search in each event list is determined from the first (last) predicate. The

order Is forward (backward) for each event class identifier which appears as an argument

of the predicate first (last).

If the argument of each min (max) predicate is a function of the formal

parameters of one event descriptor, an index for the event lirt can be created which orders

the event objects according to the function's value. The index can be maintained by the

ECM which manages the event list. In this case, the order of searching the event Not is

determined from the index. In general, ordering the event Not itself according to the

function is not possible since different event handlers may have different functions for the

same event class. The tradeoffs involved In sorting an event list are discussed in section
7.12.1.

The use of an index can be generalized to a case where the argument of a N

(max) predicate involves formal parameters of kal event descriptors. A combined Index,

whose elements point to event collections and not simply to event objects (each elemenwt

contains k references), can be created. The combined index can be maintained by one of

the k relevant ECM's, or by the EHM. If each event list contains n event objects, Me Wai

of such an index is proportional to knk. In addition to this space overhead there Is a time

ij overhead associated with the maintenance of an Index. It seem that ift general, *e time

saving obtained by using a combined index is not justified, except possibly for very small

values of k, or when time performance Is of prime importance. Update of an Index can be

done when the event lists change or each time the EHM begins the searches.

Section 7.6.5 - 144 - Case 4: Single_ime Event Hendier with Predicates

In the above Important cases, the search can proceed after an event collection

is found and used. Moreover, after the search of the current rectangular event subspece is

completed and all possible matching event collections are found and used, there in no need

to check again points in this rectangular event subspace in future Iterations of the EHM.

The above observation means that in each iteration of the EHM only the event subapace

increment needs to be covered and not the whole rectangular event subspace as in the

general case. The number of EHM messages M needed for covering the event subspace

increment containing the event collections added between two consecutive Iterations is

determined as in case 2.

7.7 Current Event Space Boundaries

An EHM has to find the current boundaries of the event space before it begins

the search. In cases 1-3 (and In case 4 when it can be handled by searching event

subspace Increments) the current boundaries together with the boundaries found In the

previous search define the event subapace Increment to be currently searched. In case 4

(in general), the current boundaries define the the rectangular event subspece to be

currently searched.

So far we have Intentionally Ignored the question: how are the current boundaries

of the event space found? The question is not relevant to an event handier without

predicates (cases 1 and 2) in which case the where clause defines properties of the event

collection which are independent of any other event. Since these properties do not change

In time, the only requirement from the EHM In those cases is to correctly cover the event

subspace Increments It finds. For an event handler with predicates (cases 3 and 4), the

I

Current Event Space Boundaries - 146 - Section 7.7

EHM should compare properties of, possibly, all events In the currently checked event

subspace and accordingly decide in which order to activate Instances of the event handler.

These properties change in time; therefore, an EHM which performs the search in nonzero

time (as unfortunately all EHM's do) may select Incorrect event collections unless several

precautions are taken. The first precaution (which is Insufficient) is to find all boundaries at

exactly the same point in time.

The action of finding the boundaries cannot be implemented simply as a sequence

of actions reading the needed values since a set of values inconsistent with each other

may be obtained. As an example consider the following event handler heading:

on E1 (i: int) A E2 0: int) where min (i+j)

Imagine that at some point in time three events from the classes El, E2 exist: E1(20),

E1 (10), and E2 (5). The above events have been caused after the previous EHM search has

ended, and they are ordered as follows: E1 (20) -- c-) E1(10), and E1(10) -- c-> E2 (5). A

naive sequential algorithm, which first finds the boundary of the event list associated with

E1 and then finds the boundary of the event list associated with E2 , may return as

boundaries references to E1(20) and E2 (5). These boundaries are inconsistent with the

causality (or the precedes) relation because E1 (10) would not be Included. If event

collections containing E2 (5) are included in the search then event collections containing

E1 (10) must also be Included in the search since E 1 (10) -- p-> E2 (5). An Instance of the

event handler would be activated for the event collection {E1 (20), E2 (6)) instead of for

I. , {(E1 (10), E2 (6)).

1I

Section 7.7 - 146 - Current Event Space Boundaries

Is It sufficient to sample all boundaries at the same point in time? The following

example gives a negative reply by demonstrating that the predicates exist or none

(together with other predicates) may cause certain anomalies If not handled correctly.

Consider the event handier heading:

on El (i: Int) A E2 (J: Int) where Min (l+J) A exist (E3)

Imagine that at some point In time four events of classes E1 , E2 , and E3 exist, ordered as

follows: E 1 (10) -- p-> E2 (20), E2 (20) -- p-) E2 (1 0), and E2 (1 0) -- p-> E3 (5); these events

have been caused after the previous EHM search has ended. An improved EHM algorithm

may sample the boundaries of the lists associated with El and E2 at exactly the same point

in time and return as boundaries references to E1 (10) and E2 (20) which are consistent with

the precedes relation. However, the EHM may then naively proceed and check the value of

exist(E3) and get the result true. The boundaries together with the value of the exist

predicate are inconsistent with the precedes relation. If the value of exist(E3) Is true then

event collections containing E2 (1 0) must also be included In the search since

E2 (1 0) -- p-> E3 (5). An instance of the event handler would be activated for the event

collection (E 1 (10), E2 (20)) Instead of for (E 1 (10), E2 (10)).

The problem is therefore that of Implementing an action sampling the event space

boundaries and the values of the exist and none predicates at exactly the same point In

time. The difficulty of course stems from the fact that the system is distributed without any

centralized control. Several strategies can be used to correctly Implement this action.

I.

(1) Locks

An obvious strategy is based on locks: the EHM locks (by shared locks) the

needed ECM's (more precisely their event lists) and then reads all the needed values

1,

Current Event Space Boundaries - 14T - Section 7.7

(sequentially or concurrently). The locking can be Implemented analogously to our

acquisition algorithm. Deadlocks among EHM's trying to read event subspace boundaries

cannot happen since they use shared locks only. However, deadlocks Involving also EHM's

executing tlhe acquisition algorithm can happen. More generally, deadlocks Involving

requestors which only try to lock object classes for read (by shared locks) cannot occur.

However, deadlocks involving also tequestors which try to lock objects for update (by write

locks) can occur. For example, if requestor R1 tries to lock (for write) objects from object

classes 01 and 0 2 and requestor R2 tries to lock (for read) coject classes 01 and 02 a

deadlock can occur.

Such deadlocks can be prevented by slightly modifying the relaxed acquisition

algorithm presented in section 7.4. The graph G has now the form G = (NR, NO; A, AL) where

NR No and A are defined as in section 7.4. The added set of arcs AL contains exactly one

arc connecting R, and Oj if all the following conditions are satisfied:

Al. Ri locks object class Oj for reading some value associated with that object class

(a list boundary or a predicate value in our case).

A2. No arc connecting Ri and O1 exists in A.

A3. A Contains at least one arc which is incident on Oj.

If object class Oj is only locked for read (by shared locks) It cannot cause a deadlock and

therefore there is no reason to connect it with a requestor RI by an arc; this Is the

justification for condition A3. The sets of object classes S1 , Sn are found as in section

7.4; a total order is defined on the elements (object classes) of each S, and the union of

these total orders defines a partial order P on the set of all object classes. The locking rule

BI' of section 7.4 can be used here.

Section 7.7 - 148 - Current Event Space Boundaries

The disadvantage of the locking approach is a reduced throughput since while

the locks are held, the locked event lists cannot be modified; in particular, new event

objects cannot be Inserted into the locked event lists. (Throughput can be defined as the

total rate of event occurrences; although, a different definition is used in appendix B.)

(2) No-Change Detection

In this strategy, the EHM Iterates at least twice through a set of actions. in

each iteration, the EHM reads all the needed values (sequentially or concurrently) by

communicating with the ECM's and keeps the read values. It Iterates until each ECM

Indicates that there have been no relevant changes (to be defined shortly) in its event list

between the current reading and the immediately preceding reading by the same EIIM.

An ECM can keep track of such changes by allocating one bit, the change bit, for

each Interested EHM; the interested EHM's are known to the compiler. The change bit is

reset each time the ECM answers a "read boundary" or "exist?" request from the

corresponding EHM. The change bit is set whenever a relevant change in the event list

occurs. If the event class identifier appears in the event descriptor list, then a relevant

change occurs whenever an element is Inserted into the event list; deletion of an element

need not set the change bit, since the EHM is interested only in existing events. If the

event class identifier appears in an argument of an exist (none" predicate then a relevant

change occurs whenever the list becomes empty (not empty).

|.
The main advantage of this strategy Is the simplicity of its implementation. The

disadvantage however, is that the EHM may Iterate forever (e.g., If events of the relevant

classes are caused at a rate which is higher than the EHM's Iterations rate).

Current Event Space Boundaries - 149 - Section 7.7

(3) Timestamps

In this strategy, an Implicit timestamp parameter is added to each event object.

The timestamp Is added by the ECM when the event arrives. The local (logical) clocks of

the various processors can be synchronized by the method described in [La-78]. In fact,

for solving our problem the required synchronization is relaxed in comparison to the one

required in the general case described in [La-78]. The only requirements for our problem

are:

1. The timestamps reflect the precedes relation (and therefore the causality

relation) between events.

2. The timestamps reflect the occurrence order implied by the predicates exist and

none.

in our problem timestamps are simply a mechanism for numbering of events by monotonically

increasing numbers according to the two requirements above. Thus, local clocks need not

be updatei each time a message tagged by a timestamp greater than the local clock

arrives, but only when such a message is relevant to at least one of the two requirements

above. This also implies that not every message needs to carry a timestamp.

In this strategy, the EHM M(H) requests from the relevant ECM's M(Ei)

(sequentially or concurrently) the needed values. All such requests are tagged by the same

timestamp tc, the current value of the local clock of P(M(H)). The purpose Is to sample the

needed values as of time tc. However, due to network delays and clocks diversity (i.e., lack

of perfect clock synchronization) the requests may arrive to M(E) at local time t, which is

greater than or smaller than tc. If tct I (clocks diversity dominates network delays),

P(M(E1)) simply advances its local clock to be at least tc, then returns the current

'Iq

Section 7.7 - 150 - Current Event Space Boundaries

requested value. If however tc<t I (either network delays dominate clocks diversity or vice

versa), M(EI) Is requested to return some value which existed at some past point in time.

The problem of maintaining history of values Is addressed In [Re-78] and some of the Ideas

there can be used for solving our problem which Is more specific.

Let us first analyze the current situation (tc(t I) for a more general case (not

restricting ourselves to our specific requests). There are now two possibilities: either M(E I)

has the needed value, in which case it simply returns it; or the value Is no longer available,

in which case a "forgotten" reply is returned. The replies are tagged by the current clock

value of P(M(Ei)); therefore, in the latter case, P(M(H)) can increment its clock and retry.

The possibility of retries is not encouraging since this strategy then suffers from the same

disadvantage of strategy (2) (which has smaller overhead associated with It).

The likelihood of the need for retries can be decreased if M(Ei) remembers the

parts of its history which would otherwise be forgotten for at least tm physical time units,

where tm is the sum of the maximum network delay and the maximum clocks diversity (or

some estimate of this sum). Another (partial) solution is to try to avoid the problem: M(H)

can first advance its local logical clock by some value At which is big enough, and only then

follow the previous procedure. Unfortunately, when several EHM's follow this strategy a

situation in which tc(t, may quickly arise; thus, it seems that the problem has not been

solved. However, It is Important to observe that In this case, logical time progresses faster

than physical time; the computation does not progress faster (In physical time) just because

!I- At increases. Therefore, the likelihood that the needed value is no longer available

decreases as At Increases.

1i

Current Event Space Boundaries - 151 - Section 7.7

The previous discussion was general, and at this point the specific requests in

our implementation scheme and their Implications are analyzed. In order to answer an

"exist?" request, the ECM can keep a list of local logical times at which the state of its

event list changes from empty to not empty and vice versa. Old entries in the list can be

deleted (after tm physical time units, as discussed previously), and In addition, the list can

be limited to contain at most n entries (the latest change points) in order to bound its

storage overhead.

In order to answer a "read boundary" request (with timestamp t), the ECM

simply returns a reference to the latest existing event object whose timestamp te is not

greater than tc. There is no need to keep any information in addition to the event list in

order to treat the request. Even if an event object whose timestamp te' satisfying

te<te'(tc existed in the past (and not currently), there is no need to remember It since an

EHM is interested only in existing event objects.

The behavior of the suggested timestamp baced scheme is equivalent to that

obtained by simultaneously sampling all needed values at a state (of the relevant event

lists) which could exist at time tc. Due to the fact that the clocks are not perfectly

synchronized, this state may have not existed in reality but It could. The user has no way

of checking whether this state Indeed existed and this scheme exploits this fact.

The main disadvantage of this approach Is a higher storage overhead; the

a. disadvantages of the first two strategies are cured here. By selecting big enough values

for the parameters tm , n, At the probability of a need to retry can be decreased below any

positive desired value. Moreover, attaching timestamps to event objects supports the

'1"

Section 7.7 - 152 - Current Event Space Boundarle3

following functions in boolean expressions (both in the where clause and In the script of

event handlers).

1. A precedes function which Indicates whether one event from the event collection

precedes another one from the same event collection; e.g.,

on E1 (I: int) A E2 (J: int) where Dj and E1 (i) precedes E2 C)

2. A time function which returns the occurrence time of an event. Such a function

can be used not only for specifying an order between two events but also for

specifying by how much time one event precedes the other; e.g.,

on E1 (i: int) A E2 (j: Int) where Inj end (time (E2 (J)) - time (E1 (I)) > 10)

If the above functions are added to the language, the relaxed requirements for clock

synchronization are not sufficient since various anomalies can happen. Assume for example

that E1 , E2 are system event class Identifiers whose events occur when buttons B1 , B2 are

pressed respectively. Assume that each event from the above classes activates an

Instance of a corresponding event handler which causes printing the event occurrence time.

Suppose clocks are not sufficiently synchronized; then If B1 Is pressed and several seconds

afterwards B2 is pressed, It may happen that the time printed for 82 Is smaller than that

corresponding to 81. Local clocks must be better synchronized to decrease the llkflhood of

such anomalies. The gereral scheme of [La-78] can be used; other schemes are described

In [Re-78].

I.

,*

The Event Class Manager - 168- Section 7.8

7.8 The Event Claw ManGer

An ECM maintains an event list which contains event objects from the

corresponding event class. It Is a process which handles requests from EHM's (e.g., Ogive

next event object"), and from instances of event handlers (e.g., "insert an event object

Into the event Pist"). Each time an event object is inserted Into the event list, the ECM

broadcasts a message to the relevant EHM's, thus suggesting that they look for new

matching event collections. Each time the event list becomes empty (not empty) it notifies

the EHM's associated with event handlers which include the corresponding event class

Identifier as an argument of a none (exist) predicate.

7.9 Event List Organization

An event list is dynamically changing. Elements can be Inserted into it, and in the

case of single-use events elements can also be deleted from it. We shall concentrate on

the latter case since the former is simpler. The fact that the memory associated with each

processor is unbounded allows us not to do garbage collection. However, we shall not

exploit this since we would like to map this implementa*ion scheme to more constrained

systems. A specific Implementation of an event list will be described In order to make the

following discussions more concrete.

An event list is Implemented as a doubly linked list with a list head [Kn-75]. The

elements In the event list are ordered according to their arrival order to the ECM. In order

to support the various list operations needed to process the requests from an ECM, a list

element will be In one of the following states:

ready: The normal state, the element is ready for booking.

.- I

--------r

Section 7.9 - 164- Event List Organizaton

booked: The element In booked by an EHM.

acquired: The element Is acquired by an EHM; It is logically out of the list but physically r1M

In the list (i.e., It Is linked to Its neighbors).

deleted: The element 1 both logically and physically out of the list.

The state of an element changes according to the diagram of Figure 7.6. The first three

states support the two phase acquisition algorithm described earlier. The distinction

between the states acquired and deleted is needed since several references to an

acquired element may exist (in various EHM's searching matching event collections).

Deleting the element from the list and returning It to the free storage may cause

unpredictable effects. Deleting the element from the list and suspending Its return to free

storage until It is no longer pointed to Is not sufficient since It does not allow simple tracing

of the elements of a list until a particular element (which can be In the acquired state) is

reached. This operation Is required in our Implementation scheme when searching the event

subspace; the particular element Is for example a boundary element.

ready*--

acquired

deleted

Figure 7.6 State diagram of a Not element

In order to support the transfer from the acquired state to the deleted state a

reference count mechanism Is used [Kn-75]. Each list element contains a reference count

field which counts the number of references pointing to It from EHM's. The reference count

1.

. - -

Event List Organization - 156 - Section 7.9

is updated whern requests from EHM's are processed. It should be noted that the reference

count mechanism is used to control the deletion of elements from a list and not for garbage

collection purposes as Is normally done.

A list element can be returned to free storage when the following two conditions

are satisfied(

1. It Is in the deleted state.

2. The data it carries Is no longer needed; i.e., the instance of the event handler

which uses it obtained all the data it requires.

Since the above conditions can be satisfied in any order, an additional bit not-needed is

required; this bit specifies whether a message saying that the element's contents Is no

longer needed (and therefore can be returned to free storage after it enters the deleted

state) has been received. Manipulation of the above conditions causes no synchronization

problems since It is performed by one processor (on which the ECM resides). If the event

list Is maintained in a shared memory (directly accessible to several processors), existence

of an appropriate test and set nondivisible instruction is sufficient for correct manipulation

of the above conditions.

The fact that reference counts are used not for garbage collection causes some

slight variations from the classical approach. The reference count mechanism should detect

a situation In which an acquired list element can be deleted as early as possible in order to

decrease the overhead while scanning the list. For this reason, only references from EHM's

are counted; references to a list element from an Instance of an event handler are not

counted. The structure of an instance of an event handier Is known to the compiler, which

knows in particular how many times each event object is referenced in the script.

Section 7.0 - 186 - Event List Organization

Therefore, an explicit message indicating that the event object Is no longer needed can be

sent by the Instance of the event handler (regardless of the reference count value).

An alternative approach In which all references to a list element are counted Is

semantically cleaner, however, It causes a redundant overhead as was explained earlier;

that is the reason why the more standard approach was slightly modified here. In both

approaches, the problem of objects which are not reclaimed due to cycles cannot occur

since only references from objects which are not handled by the reference count

mechanism are counted. One should note that nothing prevents an EHM from copying a list

element reference. Such a copying Is preceded by an explicit request to Increment the

reference count when needed; e.g., when a reference to the boundary of the previous

rectangular event space is copied to the pointer to the current list element. In some cases

the explicit Incrementing Is not needed; e.g., when a list element reference is passed to an

instance of an event handler. The decision whether to explicitly increment the reference

count is made by the compiler.

7.10 Requests from an ECM

The ECM keeps requests from various sources In a request queue and processes

them one at a time (although handling a request may be suspended). This section describes

the main requests that a typical ECM may be required to handle. The possible requests

issued by an instance of an event handler are:

Insert: Inserts an event object into the the event lat; at its end.

not-needed: Indicates that the list element s no longer needed by the Instance of the

event handler and Its not-needed bit can be set

1 b

Requests from an ECM - 157 - Section 7.10

reed: Reads all or some of the parameters of a list element. This request can also be

issued by an EHM.

The possible requests issued by an EHM are:

book: Books an event list element. The execution of this request may be suspended If

the list element Is currently booked.

cancel: Cancels a previous booking of an event list element.

acquire: Acquires an event list element which was previously booked.

next: Returns the next element (satisfying some condition) in an event list. The

execution of this request may be suspended If the list element to be returned Is

currently booked.

Two of the above requests deserve further explanation. The meaning of the Insert request

is more complicated in the case of nonrecurrent events. An ECM should verify that the

event list does not contain an object identical to the object included in the request before

Inserting the object iinto the list. Some optimization can be used here as discussed In

section 7.12.1. If the event list is kept in shared memory, It is possible that the Instance of

the event handier trying to cause the event will search the event list itself; thus

decreasing the load on the ECM. If an Identical element is found, It aborts the trial;

otherwise, it sends the Insert request, indicating up to which point it has searched the list.

At that point the ECM, which has exclusive write access to its event list, scans the rest of

the event list (new elements may have been added to the list since the instance of theI.
event handier performed its search) and treats the given element appropriately.

, . I,

Section 7.10 - 186 - Requests fo. an ECU

The next request Is a complex request Intended to support event subspace

search by an EHM. The ECM searches an event list within two lmits while performing some

checks on the list elements. These checks could also be performed by the EHM but the

communication overhead in such a solution may be high, especially for EHM's which are

Interested only in a small percentage of the elements of a list. The ECM can perform at

least an initial filtering of the event list and thus decrease the number of messages

exchanged with the EHM. The search starts at the element following an element specified

in the request and proceeds (forwards or backwards as specified in the request) until an

element satisfying some condition Is found or the limit Is reached.

The structure of the condition is limited; it is not a general boolean expression.

For example, the condition can be a simple boolean relation whose terms may refer to words

of a list element by denoting an offset from the beginning of the element, or to constants;

e.g., according to the following syntax:

(condition> ::= (arg> (oper> (erg) relatfonal.operator) 0

(erg) ::a (constant) i <offset)

(oper) ::z add I sub land I xor

(relational operator) ::- (I 10 1 >a I) I>

Elements in the acquired state are not returned as results; they are skipped and

may be deleted, depending on their reference count. The request can specify that during

the search reference counts should be modified by a number specified in the request; theI° .

reference counts are updated as references move from one list element to another during

the search. A special check can be performed to detect cases In which acquired elements

are pointed to only by references given in the request Itself. If such elements are found

1"

r .

Requests from an ECM - 159 - Section 7.10

they are deleted h'om the list If an element pointed to by one of the limit referonces is

deleted the limit reference retreats; i.e., a new limit reference pointing to a previous

element not In the acquired state is returned as one of the request results.

An interesting question is: What should an ECM do if during preforming the next

request a booked element is encountered? First, booked elements which do not satisfy the

search condition are skipped. The more Important question is: how to treat booked elements

satisfyi'ng the condition? Several strategies can be employed. In the first, processing of

the request is suspended until the state of the element changes. In the second, such

elements are returned as results. The first strategy assumes that the probability that the

EHM which has booked the element will cancel the booking is low, and therefore does not

return the element to the requesting EHM in order not to cause it to do fruitless work. The

second strategy is based on the opposite assumption, and it therefore returns even booked

elements as results. Both strategies are correct, but they may yield different performance;

some experimentation is required in order to choose among them.

During processing of the next request, the list head is specially treated and

serves as an additional limit in each direction of the search; its reference count is not

modified. The first (last) element of a list can be accessed by issuing a next request with

the list head a3 the current element In the forward (backward) direction. This request can

be also used for finding whether the event list is empty. The first element of the list is

I. searched for, specifying that no side effects are to occur (in particular, no reference count

changes). In this case, booked elements do not cause suspending of the request, since a

booked element still exists.

t'I-

Section 7.11 -160- Fairness

7.11 Fairness

So far fairness issues have been intentionally ignored. An Implementation of EBL

must guarantee several fairness rules (FO-F3 of chapter 2). The first question Is whether

the implementation scheme outlined In this chapter Is fair or not. Unfortunately, our

implementation scheme only guarantees fairness rule FO; each of the other rules may be

violated. The principal source of the problem is contention among EHM's trying to acquire

single use events from the same event class. Suppose EHM M, needs one event from each

of the two event classes Ei and E in order to activate an Instance of the corresponding

event handler for i=1, 2; assume E has a singleuse type associated with it. Theoretically,

M2 may never succeed In the acquisition of an event from event class E (if M1 always wins)

and thus may never use events from event class E2 (regardless of the type of E2).

Depending on the rest of the program, this situation can violate F1 and F2.

For example, a P operation (as described In chapter 5) may wait forever while

Infinitely many P operations on the same semaphore variable successfully terminate,

Similarly, a reserve request in the airline reservation system of chapter 6 may not be

processed forever. Such situations are normally called starvation In process based models.

Fairness rule F3 is guaranteed in our implementation scheme for multi_use event

handlers without predicates. The rule is not guaranteed, however, for multiuse event

handlers with predicates. The problem arises when an exist (none) predicate contains as an

I argument a singleuse event class Identifier. The predicate may be satisfied In infinitely

many periods of the clock (which Is used In the fairness rules definitions), each time for a

short duration. An EHM may be too slow to begin the search while the predicate Is satisfied;

'I•

Fairness -161- Section 7.11

it therpfore may never use event collections thtis violating F3.

The problem can be easily eliminated by associating timestamps with events (as

suggested for finding event space boundaries). An EHM can examine the value of the

predicate at some past point and if it is satisfied perform the search on the event space

which existed at that time. The same problem may arise In case of single-use event

handlers; the above scheme can be applied here. The following scheme for guaranteeing

rules F1 -F2 can solve this problem too (for both types of event handlers).

The fundamental idea Is that each EHM M(H) should detect a case in which it

could use an event e In many opportunities (possibly together with some other events) but It

failed to do so due to some race condition. If H does not contain predicates then the only

reason for a failure of M(H) is that events from certain singleuse event classes are used

by other EHM's. If H contains predicates then an additional reason is that predicates may be

satisfied for short periods of time which are insufficient for M(H) to select and acquire the

needed events. When M(H) detects that it failed in a race it acts to increase the likelihood

that it wins a similar race in the future. It basically notifies the relevant ECM's so that they

can prefer It In the future.

In order to allow EHM's to detect cases in which they lose, the behavior of ECM's

must be modified. An ECM should not delete an event from the event list Immediately when

possible, but rather, delay the deletion for a period of time T, which Is long enough to enable

EHM's to detect that they could use the event. T can be dynamically changed according to

the sizes of the event spaces associated with the relevant EHM's. When an ECM

processes the next request It does not skip over acquired event objects and does not

I

Section 7.11 -162- Fairness

suspend the processing when a booked event object is encountered. When an acquired

event Is thus returned It Is marked as acquired; the EHM checks If It could use such an

event but It does not try to acquIre It.

What should MH) do when it catects that it failed? Suppose M(H) finds out that

event class E Is one of the reasons to the failure. M(H) can then increment a counter (a

failure counter) CHE associated with the pair of managers M(H) M(E) and let M(E) know the

new value. M(E) knows the values of all relevant counters and can give a higher priority to

requests associated with EHM M(H) whose failure counter has the highest value. This higher

priority is not sufficient since requests from M(H) may arrive too late to be served. After

M(E) notifies EHM's about a change in its event list it restricts further changes in the list for

a period of time T'. During this period, only changes resulting from requests made by M(H)

are allowed. After this period, changes are ordered according to failure counters. T' can be

dynamically changed as T above.

Let us give some details of a scheme for dynamically evaluating T' and

manipulating the failure counters. Other schemes, perhaps more efficient, are possible and

we describe this one only as a concrete example. In this scheme If M(H) finds during a

search of Its event subspace that it failed due to M(E) It Increments CHE by 1. Failure

counters are not decremented (although other strategies are possible).

Suppose a single-use event class Identifier E appears In the headings of event

handlers H1 , ... Hn. If a new event is added to the event list associated with M(E) at time

to, M() sends messages to M(H 1), ... M(Hn) and waits T' time units as described earlier.

During the T' time units all above managers should be able to perform searches of their

'II

Fairness -163- Section 7.11

event spaces (other schemes are possible). After that interval W(E) selects M(H) whose

counter has the maximum value among all managers that have requested to book events of

M(E).

T' can be found as follows. The message sent by M(E) has first to propagate to

all M(H) above. A bound on this propagation time Is A1 , the maximum network delay, which

we assume is known. Each M(H i) then finds the boundaries of its event space as of a time

no later than to+A2 , and then searches the event subspace. &2 is A bound which can be

derived from A, and exact parameters of the algorithm for finding event space boundaries.

Each time there is a change in one of the event lists associated with an event

class identifier E1 (which appears in the heading of Hi) the new size (number of event

objects) SJ of that list Is sent to M(E). Due to network delay, at time to M(E) knows each S]

as of a point in time ti, where to-tI I A 1 . The actual size of the event list associated with

Ej that each EHM may have to scan can Increase in the interval AI+A2 by at most

AS (A + A 2)R P Ri is the maximum rate in which events can be added to the event list

associated with E It can be found from the maximum processor speed which we assume Is

known. M(H i) may have to scan up to Sj+AS, events from the event list associated with E .

The time required by M(H i) to complete the search is bounded by Ti a K, ' (Sj+ASj) where j
I

ranges over event class identifiers appearing in the event descriptor list of Hi.KI depends

on the heading of Hi, and on the minimum processor speed which we assume is known.

Since T' should allow all managers M(H i) to complete their searches, T' > AI +max (T I) is1I

appropriate. (The term Ai in the above Inequality represents the propagation time of the

original message sent by M(E).)

'I

Section 7.11 -184- Fairness

Smaller values can be selected for T' in many cases. For example, If formal

parameters associated with event class Identifier Ej do not appear in the where clause of H1

then S j+ASi can be replaced by 1 In TI. As a consequence, If HI has no where clause then Ti

I replaced by Ki.

As an example of the way the failure counters work consider the folowing

program which consists of four event handlers:

S, L1, L2, 13: single_use recurrent event;

on program-start
seq_cause L1I; 12; L3; 3

end ;

(Event handler H, (1=1,2,3))

on LI A S a P operation)
seq-cause ... ; S ; LI

end;

The three event handlers H1 , H2 , H3 correspond to three concurrent processes of the form:

Li: P (S); a P operation on S)

V () ;a V operation on S)

Goto Li

We can easily show that every event in event class Is eventually used; thus,

none of the three corresponding processes can starve. It Is not possible that a single EHM,

say M(Hi), always wins (succeeds to acquire an event from event class S each time such an

event exists). The value of the counter CHIS associated with M(Hi) remains constant

whereas the values of the counters associated with the other two EHM's Increase eachI.
time an event of class S Is used. Eventually the value of the counter associated with

another EHM becomes bigger than that of CHI S , and all that time M(H i) does not win but

* I,

Fairness -165- Section T. 11

another EHM wins. Similarly, It is not possible that each time an EHM wins it is one of two

EHM's, say M(H1) or M(Hj), whereas the remaining EHM M(Hk) never wins (i.e., starves). The

reason is that the rate In which each of the two counters CHiS CHjS is incremented is les

than once per use of an event from class S (since none of the two EHM's always wins as

was shown earlier). On the other hand, CHkS Is incremented by I after each use of an

event from class S (since M(Hk) always loses). Eventually the value of the counter CHkS

becomes the biggest and M(Hk) succeeds to acquire the next event from class S. The

case in which none of the three EHM's ever wins is ruled out by our scheme since each time

an event from event class S exists one of the three EHM's acquires It.

A nondeterministic state diagram can be drawn as shown in Figure 7.6. Each

state in this diagram describes the values of the three counters CH, S, CH 2 S' CH3S relative

to the value of the counter having the smallest value at that state. We assume the Initial

value of each of the three counters is 0. A transition from state Sj to state Sk in the

diagram is labeled by the subscript I of the winner M(H i) in state S .

.1.1

3 1

1 .0 1
2 3

Figure 7.6 State dagram with f ailure counters

Section 7.11 -166- Fairness

The Intentional delay introduced by an ECM and the additional processing done by

managers to achieve a fair implementation may cause performance degradation. The

scheme can be Improved. There are cases In which M(H) needs from M(E) only events

satisfying some condition. For example, in the airline reservation system of chapter 6 an

EHM may need the counter associated with a certain flight. In such cases, M(E) can

remember the needed condition and Introduce the delay period T' only when the appropriate

condition Is satisfied.

An EHM should repeatedly try to Include each existing event In event collections

It examines (unless it knows that the event cannot participate in any matching event

collection). Otherwise, the scheme presented above does not guarantee fairness rules

F1 -F2. This requirement (from an EHM) does not pose serious difficulties. Each EHM should

examine single use events from each relevant event class E in the order In which they

arrive to M(E) (unless E appears in a last predicate in the heading of H).

Events of multiuse types should be treated differently. Consider an event

handler whose heading has the form:

on E1 ...) A E2 (...)

Suppose the types associated with El and E2 are alngle use event and multi use event

respectively. If events from event class E2 are examined In the order In which they arrive

to M(E 2) it may happen that only the first event In the list Is selected for matching event

collections while other events are never selected.

In order to eliminate such anomalies, In each search performed by an EHM M(H)

the first event to be examined from a multiuse event class E can be selected according

4j

' I, . I . .

/

Fairness -167- Section 7.11

to some round robin order (on the events of event class E). in addition, the mulMus event

class whose events are examined first In the search can be selected according to some

round robin order (on the multi use event classes appearing In the event descriptor list of

H). Finally, suppose H contains In Its event descriptor list event class Identifiers of

multiuse and single.use event types. M(H) examines event collections by trying to

match all possible combinations of singleuse events to one combination of multi use

events, then Iterates for another combination of multiuse events etc.

Note that the modifications In the Implementation scheme suggested In this

section do not Introduce possibilities for deadlocks involving managers since timeouts are

associated with the various waiting periods introduced above. The only negative effect of

the modification is performance degradation; this is the price paid for achieving a fair

Implementation.

7.12 Opt~mIzatlon.

There are several sources for optimization in an EBL program. The simplest one Is

common subexpresslon elimination. This optimization can be applied both to the script of an

event handler and to the boolean expression In the where clause of an event handler by

well known techniques [Ah-77]. Other sources for optimization are derived from the unique

semantics of the language and some of them are analyzed next. These optimizatons should

be viewed as complier options which can be Individually selected by the user. The degree

of effort to be Invested In each selected optimization can be another parameter specified

by the user.

,I
I,€

- -

Section 7.12 - 168- OpIzstlns

The basic event list organization suggested In previous secdons wes a doubly

linked list ordered according to the arrival order of event objects to the ECIL However,

there are cases which are easily detected by the compiler, in which this data swture can

be either Improved or a totally different organization selected. The optimization is based on

the where clauses of event handlers containing the event class identifier in their headings,

as well as on the type of the event class Identifier.

7.12.1 Sorting an Event Ust

There are several reasons for sorting an event list. One reason, which has

already been mentioned, is for preventing revisiting of an event collection in case of a

single-use event handler with predicates. An event list can be sorted according to one or

more keys (by creating indexes). If a where clause contains a mn or int predicate whose

argument is a function of the formal parameters associated with that event clasi Identifier,

sorting the event list according to that function can result in a better performancL The list

itself can be sorted according to the function only if there is only one such function

associated with the event class Identifier, and the predicates first or Imst are not

associated with the event class identifier In the whole program. If the Hat Itself onnot be

sorted, multiple Indexes can be created which effectively sort the event Not eccrding to

the functions.

What are the tradeoffs Involved In sorting an event list? Suppose EHM M(H)

wishes to find an event satisfying some min predicate from ECU M(E). Let n be the number

of objects In the event list. In the most straightforward scheme, M(H) finds the desired

object by sending n messages to M(E); each message requests the next object. The total

-0 .-

Sorting an Event List - 169 - Section 7.12.1

number of messages Is 2n. This scheme can be improved by allowing M(H) to request all

objects in one message. The total number of messages in this case Is reduced to n+1. A

further reduction in the number of messages required can be achieved If M(E) Itself finds

the desired object. In this case, the total number of messages is reduced to 2,

independently on n. The structure of the predicate need not be sent from M(H) to M(E); the

complier can supply the information to M(E). M(H) can be required at most to supply the

values of some other events' parameters.

Thus, in order to reduce communication overhead an event list need not be

sorted. The price for this reduction Is paid by ME) who has to perform more computation in

order to find the desired object. The computation time Is proportional to n, I.e., O(n). If the

list Is sorted the computation time (or more precisely the number of operations) is constant

since the first object in the list is the needed one. If, however, the desired object has to

satisfy som function in addition to the min predicate, as for example in:

an E1 (I, j: Int) A E2 (k: Int) where (jak) A min (i)

the computation time In the worst case can be proportional to n, i.e., O(n). Note that

Inserting a new object into an event list requires an update of each Index. The time

complexity of this update is 0(Iog n) for each index, If the index has a tree structure and

the list contains n objects.

A totally different reason for sorting an event list arises In case of an event

, class Identifier of a non recurrent type. In this case, before inserting an event object Into

the list, the ECM has to verify that no Identical element already exists in the list. The

event list can be serted (by containing an index when necessary) according to the event

parameters. The time comlexity of the search can be reduced from O(n) to O(log n) if the

f9

Section 7.12.1 - 170 - Sorting an Event Lst

list (or the Index) has a tree structure and the list contains n objects.

7.12.2 Preventng Re-evwato of Expressions

The optimizations described earlier which prevent revisiting an event collection

reduce significantly the amount of expression re-evaluation performed by an EHM. However,

there are more cases In which optimization can be done. If the boolean expression in a

where clause contains a subexpresson which Is a function of the formal parameters of one

event descriptor (with corresponding event list k), this function can be evaluated once and

stored as a hidden parameter of the event (this is a memolzing technique). The saving In

computation time Increases with the number of event descriptors in the event descriptor

list, since the number of event collections for which the same value of the subexpresslon is

needed Increases, Let N, be the number of existing events In the part of event list I to be

searched by an EHM. The number of times the subexpression has to be evaluated can reach

max (FT N, 1) If the proposed optimization is not employed.
iluk

There is a time space tradeoff here. In our virtual system, the decision whether

to apply this optimization is easy since memory Is unbounded. On more constrained systems,

the compiler must be given some Information about the use of this optimization. There may

be several degrees of this optimization. In the first one, it is not employed at all. In the

second one, t is employed only for subexpresslons of a boolean type (which waste very

little storage). In the third one, the optimization Is used wherever possible.
K

There may be several strategies regarding the evaluation time of the hidden

parameters of an event. The simplest one is to evaluate when the event is caused. The

drawback of this strategy Is that If the event contains several hidden parameters for use

It

Preventing Re-evaluation of Expressions - 171 - Section 7.12.2

by several EHM's, It may be that some of them will not be needed and computation time is

wasted. A slightly complicated algorithm Is to evaluate a hidden parameter the first time it

Is needed. This requires In general both storage to mark whether the parameter Is already

computed, and time for checking if it is already computed. These tradeoffs are reminiscent

of those related to the various mechanisms for passing parameters to procedures; e.g., call

by reference, call by name, call by value, or call by need.

7.12.3 Event Class as a Counter

In case of an event class Identifier having no (explicit or Implicit) parameters

associated with it, the event list can be replaced by a counter counting the number of

existing events from that class. The counter can only be incremented in case of a

multi use recurrent event, and can also be decremented in case of a single use

recurrent event. Accesses to the counter must be appropriately synchronized and this

task can be achieved by the ECM. The space required to represent a list of n objects Is

constant (assuming overflow never occurs) as opposed to O(n) in the general Implementation

of an event list.

Suppose an event class Identifier has parameters associated with it, and it does

not appear as an argument In any of the predicates first, last, min, or max. If the total

number of distinct parameter combinations that events from that class may assume Is

bounded by a small number k (such as In the case of the type event (bool, bool) for which

k=4), the event list can be replaced by k counters, each corresponding to a specific

parameter combination. The space required to represent a list of n objects is a constant

O(k) as opposed to O(n) In the general Implementation of an event list.

*1 . I n

Section 7.12.3 - 172 - Event Class as a Counter

In all the above cases, if the event class Identifier is of a non recurrent type,

each of the counters can be replaced by a single bit.

7.12.4 Event Class as a Record Variable

The problem of determining at compile time whether an event class can be

represented as a record variable Is an interesting one since such a knowledge can simplify

the corresponding ECM. For an event class Identifier of a single use type it means to

decide whether at any point in time at most one event object from that class exists.

Unfortunately, since our language is universal, as can be seen from chapter 5, the above

problem Is equivalent to the halting problem.

In case of an event class Identifier of a multi use type, a similar decision

problem exists. Since the semantics of multi use events is that they are never forgotten,

it seems that the prospects for optimization In this case are even fewer than in the previous

case. However, there are cases which can be easily detected by the compiler In which an

event class can be represented as a record variable.

One such case Is that of an event class identifier E of a multiuse recurrent

type such that the where clause of every event handler H containing It in Its event

descriptor list satisfies the following conditions:

1. No formal (explicit or implicit) parameter of the event descriptor associated with

E appears in the boolean expression of the where clause..

2. E appears in exactly one event descriptor of H.

3. One of the following conditions holds:

a. In every H, E appears as an argument of exactly one predicate first,

Event Class as a Record Variable - 173 - Section 7.12.4

and no formal parameter of E appears in the argument of any other

predicate.

b. In every H, E appears as an argument of exactly one predicate last,

and no formal parameter of E appears in the argument of any other

predicate.

The common characteristic of all the above cases Is that the ECM must remember

only one event object. The event object has some minimum (maximum) value associated with

It: the Index of the event object in the event list (which is not needed). In case a, only the

first occurred event is remembered; in case b, only the last event which occurred so far is

remembered.

Event objects which are no longer needed by the ECM cannot be simply garbage

collected since references to them may exist in various Instances of event handlers. A

slight modification of the reference count mechanism (in which references within Instances

of event handlers are counted in addition to references within EHM's) can be used together

with the state of a list element to appropriately solve the garbage collection problem in

these cases.

7.12.5 Event Class as an Array of Records

The optimization discussed In the previous section can be extended to deal with

an array of records If condition 1 is relaxed to the following one:I.
1'. Only formal parameters from a subset S of the set of formal parameters of E are

used in - lean expressions In where clauses of all H.

In this case, the parameters Identified by S can serve as array Indexes. The array can be

II i i-- 9

Section 7.12.6 - 174 - Event Class as an Array of Records

Implemented as a sparse array since In general, not all its elements exist.

This optimization captures, among the others, uses of multlluse events for

database applications as shown In the readers writers example In chapter 6.

7.12.6 Combined EHM's

A combined EHM can be associated with n)1 event handlers H1 Hn containing

Identical event descriptor lists (except possibly different formal parameters), instead of n

separate EHM's. The advantages of this approach are several: Less computational

resources are needed, less messages are exchanged with the relevant ECM's, and the load

on each of these ECM's is reduced since they have to handle fewer requests. Each of the

above reductions can reach a factor of n (e.g., when the n event handlers are Identical).

One event space can be associated with the n event handlers; the combined EHM can cover

It, find event collections matching one or more of the event handler headings, and activate

Instances of those event handlers according to our previous schemes.

If the event handlers are single-use event handlers, then once an event

collection which matches one of them Hi Is found, there Is no need to check whether it

matches the others. The reason Is that after the acquisition algorithm Is applied and

terminates (successfully or unsuccessfully) the event collection no longer exists. If

however, the event handlers are multiuse event handlers, checking the other event

handlers Is In general needed. The exceptions are those EHM's for which It has been

established that the boolean expressions In their where clauses and the boolean expression

of HI are not mutually satisfiable.

h.

|"'Im m m m * ---" m . " ; -

Combined EHM's - 175 - Section 7.12.6

As was indicated earlier, the problem whether two general boolean expressions,

whose terms contain relations between Integer expressions (containing the operators +, -,

*, and /), are mutually satisfiable is undecidable. For simple boolean expressions in which

the relations are restricted to atoms of the form:

(identifier> <relational-operator> (constant>

(for (relational-operator> as defined earlier in this chapter) the problem becomes decidable

but NP-hard. Polynomial algorithms for more restricted cases, e.g., conjunction of atoms are

known [Wo-77]. In such cases, the compiler can generate more efficient combined EHM's.

An example of a situation in which the conditions for creating a combined EHM are

met is the equivalent of a case statement (or an if statement). In the general scheme

described in previous sections, the conditions triggering each branch of a case statement

are evaluated concurrently whereas here they are evaluated serially. This Is the price paid

for allocating fewer computational resources for this task.

7.12.7 Eliminating Redundant Events and Event Handlers

The first kind of redundant events are those which probably stem from

programming errors. In one simple case, event class Identifiers which do not appear in any

event handier heading can be eliminated from the program (unless they are system event

class Identifiers) without changing the meaning of the program. The only changes in the

program behavior are those related to execution times, over which the programmer has no

direct control anyhow. In another simple case, an event handler containing In Its event

descriptor list at least one event class Identifier whose events can never occur, can be

• eliminated. In a more general case, there Is a group of event handlers H1 , ... , Hn each

I, .

Section 7.12.7 - 1 76 - Eliminating Redundant Events and Event Handlers

containing in its event descriptor list at least one event class identifier from the set

El, Em whose events can be caused only in H 1 , ... , Hn. In this case, all event handlers

H1 , ... , Hn can be eliminated from the program without changing its behavior. We shall not

pursue this kind of optimization since detecting such cases will normally cause the

programmer to modify his prugram and recompile it.

A more Interesting problem is that of detecting and eliminating Intermediate

events. This case is Important since it occurs when a program Is developed in a top down

approach without deleting the Intermediate steps (as discussed in chapter 3). The simplest

case is that of an event class identifier E which appears in the event descriptor list of one

event handler H; H contains only one event descriptor in its heading and has no where

clause. In this case, E can be eliminated from the program. The script of H is appropriately

substituted into every event handler where events from class E are caused. This

substitution raises several problems which can be easily dealt with by the compiler, such as

determining scopes of identifiers. Such a substitution may yield a script which defines a

serial / parallel combination on its events (rather than the more restricted case of either a

serial or a parallel order as allowed In EeL). Implementing these extended scripts should not

pose serious problems.

In a slightly more general case, E appears in several event handlers H 1, ... , Hn

each restricted as H above but a where clause without predicates is allowed in each Hi. A

slightly more complicated substitution is needed here. It requires some kind of an if

statement or a case statement within a script, and these can be easily Implemented.

I-

Tag Handling and Tag Optimizations - 177 - Section 7.13

7.13 Tag Handling and Tag Optimizations

Tag handling without optimization is not complicated. A simple distributed tag

allocation scheme allocates as a tag value some combination of the number of the processor

which executes the instance of the event handler which defines the tag, and a unique

number (unique to this processor). This approach eliminates the need for a central tag

allocator. Tag operations are performed on those numbers in the obvious way.

Some optimizations can be performed by observing that the main (and intended)

use of tags is for joining n concurrent branches of a computation. The general form of such a

join Is:

an El .. t l : t a g , .. .) E 2 (.. t2: tag, A.... A .. En (.... tn: tag,..

where B and t 1=t 2 and ... and tn.1=tn

or slight variations of it, where B Is a boolean expression (without predicates). A great

Inefficiency can result in cases where there are many events in each event class El, but

the same tag value appears in few events; In particular, in exactly n events. This Is

normally the case when Joining n branches of a computation whose Instances are activated

concurrently many times.

The feature of an ECM which allows specifying a simple condition in a next

request saves communication overhead slice the condition sent to El ()1) can be ti=o,

where ec is the value of the tag parameter of E1 . However, each ECM has to scan Its event

list until an event with appropriate tag is selected.

Section 7.13 - 178 - Tag Handling and Tag Optimizations

An attractive optimization Is to allocate a distinct processor each time a new tag

value is needed and to take the processor number to be part of the tag value. This tag

processor maintains a tag list. Each element of this list contains a reference to an event

object carrying the same tag value and an Identifier of the class of that event (e.g., the

number of the processor on which the corresponding ECM resides). All events carrying the

same tag are pointed to by the tag list.

Each time an event object carrying a tag parameter Is Inserted into an event list,

a message Is sent to the appropriate tag processor by the ECM; the tag processor inserts a

new element into Its list. Each time an event object is deleted, the corresponding element

in the tag list is also deleted. The tag processor itself can be returned to the free

processor pool when Its list becomes empty and its tag value can no more be copied as a

parameter ol newer events (a state which should not be difficult to detect). This can

happen only if no event object of a multi-use type is pointed to by the tag list, since

multi use events are never forgotten.

The overhead In finding matching event collections can be greatly reduced by

using the tag processor. Instead of finding matching event collections by scanning event

lists, it can be done by sending messages to the tag processor. In the normal (intended)

tag uses, this approach decreases the time needed for finding a matching event collection.

In other uses the time may Increase. This situation can be easily remedied by using the

original technique and the tag processor technique concurrently and aborting the losing one

I, whenever a result Is obtained.

b.

Summary -179- Secton 7.14

7.14 Summary

A manager based Implementation scheme has been developed in this chapter.

This scheme associates an event class manager with each event class Identifier in the

program, and an event handier manager with each event handler. These communicating

managers operate without any centralized control. A two phase distributed locking

(acquisition) algorithm in which deadlocks are prevented has been developed. Many

existing distributed locking algorithms prevent deadlocks by using a total order on all

objects to be locked. Our lotking algorithm only uses a partial order on all object classes.

The advantage of this algorithm is that objects can be locked by a requestor concurrently

(and not sequentially as in other algorithms).

The previous chapter has demonstrated the power and the roles of some of EBL's

predicates. This chapter has shown that predicates somewhat complicate the

Implementation of the language. It seems that the complication is justified.

I.I

Section 8 -180- Network Implementation

8. Network hilmentaton

This chapter Investigates strategies for Implementation of EBL on a proceseor

network. In contrast to the previous chapter, this chapter does not assume unlimited

computational resources. The network consists of a fixed number of processors p, each

equipped with bounded local storage. For simplicity we assume that all processors are

identical. The network is connected but each processor Is directly connected only to a

subset of the set of processors In the network, Its neighbors. An example of a network

satisfying the above conditions Is the MuNet [Wa-78b]. We no longer assume that the

cost of communication between program objects residing on different processors is zero. In

fact, this cost will be one of the prime factors In the Implementation scheme.

We would like to use the strategy outlined in the previous chapter but the

limitations of the network pose several problems:

1. It may not be possible to allocate a distinct processor for each task; several

tasks may have to share a single processor.

2. An object (e.g., an event list) may not fit into the memory of one processor and

may spread over several processors.

3. Objects may have to move from one processor to another due to memory

limitation in order to evenly share load among processors, or in order to decrease

communication overhead.

i.

I, . .Iii i i i l i i ' i ii l lmlmmmi a

Object Management - 181 - Section 8.1

8.1 Object Management

This section discusses the Issues of object management and communication

among objects in a network. The main kinds of objects in our scheme are: managers (ECM's

ano EHM's), event objects (which are kept within event lists managed by ECM's), scripts of

event handlers (a copy of an event handler script may exist in more than one processor in

the network), temporary tasks (instances of event handlers, or short tasks spawned by

managers or by instances of event handlers), and messages exchanged among the above

objects. An important issue in a network implementation, in contrast to the virtual system

Implementation of the previous chapter, is on wbich processor in a network an object

resides. The ;ssue Is important due to its major effect on performance. A great deal of this

chapter (sections 8.2-8.7) investigates the issue of finding good Initial object distributions.

It Is important to understand that once all managers are successfully allocated to

processors (which must be done initially) there Is never a necassity of moving a manager. If

due to memory limitation something must be moved from one proc, ssor then temporary tasks,

scripts of event handlers, and parts of event lists can be moved; the managers need not

move. Moving a manager Is only a matter of efficiency. The only reason for moving a

manager Is decreasing communication overhead. An ECM may move to processor Pu If most

of its event list elements reside on Pu. An EHM M(H) communicating with several ECM's

M(E1), .. M(E n) may move to (or close to) P(M(Ei)) if the event list associated with Ei

contains the largest number of events to be checked by M(H) over E1 , ... ,En.
I.

Since objects may r.:ve among processors, the question of how they should be

addressed arises. Our previous solution in which the address contains the processor number

'I

Section 8.1 -182- Object Management

may not be efficient since each time the object moves references to It must be updated. In

a more appropriate addressing scheme an object is referenced by using its name (a logical

address). Some mechanism is needed for translating an object name to a physical (network)

address. Such a translation can be achieved by keeping in each node a translation table. An

entry In such a table can specify, for example, for each object name a processor number

and an address local to that processor (or one of these two Items and an indication whether

the object is local or remote). This scheme is still not flexible enough (considering object

movement) and suffers from a high space overhead.

For concreteness we will select a particular translation mechanism, although most

of the discussions in this chapter are independent of this mechanism. For each object 01 a

tree is created (reference tree) spanning all network nodes containing objects which

reference 01 (as well as other nodes as needed for achieving a connected tree). This

mechanism has been developed in [Ha-78, Ha-79]. Only a subset of the features of

reference trees described there are needed in our implementation; however, the same name

will be used here. In our case, a reference tree for object 01 is a rooted tree; the root is

the node on which 01 resides. A principal advantage of reference trees is that if 0i moves,

only the part of the tree to which 0 i1 1 connected need be updated, and not the whole tree.

[Ha-78] describes a distributed algorithm for maintaining reference trees; a processor

manipulates a reference tree only on the basis of Interactions with its immediate neighbors

in the network.

I.
Other advantages are obtained if reference trees are used. Not all nodes in the

network participate In each tree (i.e., not every node knows the names of all objects);

therefore, space overhead can be smaller than in the case of translation tables (discussed

1,

Object Management - 188 - Section 8.1

earlier). Each node does not know the complete route to the root of the tree, but rather,

only the next link to use (like in the Arpanet routing algorithm); this adds to the flexibility of

the scheme. Routing of messages from a node on a tree to the root is trivial. The tree can

also be used for communication of messages from the root to the rest of the tree as

discussed next.

An Interesting question is: in what ways can a broadcast from one manager to

several others be implemented? The need arises when an ECM M wishes to broadcast the

occurrence of some change in its event list to several EHM's. Similarly an EHM M may wish

to broadcast to several ECM's a request such as "read boundary". One approach Is that M

sends separate messages, one for each destined manager along that manager's tree. The

second approach Is to broadcast the message on M's own tree from the root to the leaves.

In every node to wrich the message arrives a check Is made whether any manager is

Interested in the message. The message is passed on towards the leaves If there are more

managers In that direction. Note that both approaches are possible since In our

Implementation scheme If manager M i communicates with manager Mj then P(M i) is included

In the tree of Mj and P(Mj) is Included In the tree of M i.

The selection of the broadcast strategy can be dynamically made by M, based on

information that It gathers. If M has to send messages to m managers M1 , ... I Mm and the

distance between M and M I along Mi's reference tree Is Di (assuming a distance 1 between

neighboring processors) then the communication cost In the first approach Is: C, DI. In

the second approach the communication cost C2 Is at most n-1 where n is the total number

of nodes in M's reference tree. Keeping track of C1 and C2 Is quite simple. C2, for

example, can be calculated by a distributed algorithm which propagates the appropriate
L "L

Section 8.1 -184- Object Management

Information from the leaves towards the root of M's tree whenever changes in the structure

of the tree occur. Since managers do not move frequently, the overhead Involved in

calculating C1 and C2 is expected to be low.

One approach could be to associate a reference tree with each object in the

system. This approach may work but It totally ignores the special properties of the

language. The advance knowledge of the kinds of objects dealt with and their relationships

with each other can be used to decrease the number of needed trees by combining several

trees into one (thus decreasing space and time overheads). In particular, there is no need

to create a distinct tree for each event object. One reference tree can be associated with

the corresponding ECM, and the ECM can maintain its objects independently of the

reference tree by some less expensive mechanism. The problem of a list which does not fit

into one processor can be dealt with by spreading the list among several processors and

allocating, secondary ECM's to these processors, controlled by the (main) ECM. A separate

reference tree can join the secondary ECM's with the main ECM.

An ECM is a heavy object since in general moving it Involves moving many objects

(event objects). Moving a manager requires updating several manager trees; the tree

associated with that manager, and those associated with the managers with which it

communicates; as well as trees associated with temporary tasks. Thus, In our scheme

managers will not move frequently, but rather, temporary tasks will be those which normally

move.
I.

Sections 8.2-8.7 investigate the problem of initial distribution of objects in a

network. Section 8.8-8.9 investigate the problem of creating Initial reference trees.

I,

Initial Object Distribution - 185 - Section 8.2

8.2 Initial Object Distribution

We could stop at this point and say that after a program is compiled the loader

loads the objects generated by the compiler to one or more processors In the network

regardless of their relationships with each other; during the course of the program

execution objects will move in such a way that overhead is minimized and load is equally

distributed. However, the transient period may last over most (or even all) of the program

, ,., execution time. This is true in particular for programs whose run time Is short.

Thus the problem of finding a good (or optimal) initial object distribution in the

network according to some goodness criterion (which is discussed in section 8.3) Is of great

Importance. Before a program is loaded, a global analysis can be made, based on data

generated by the compiler and the current structure of the network, whose purpose is to

find a good initial object distribution and the corresponding reference trees.

Problems -lmllar to ours have been discussed in the literature. We shortly

discuss some of them and explain why their results are not adequate for our purpose.

[St-78a] discusses the problem of distributing program modules In a distributed system. As

examples of distributed systems the paper gives: the Arpanet, C.mmp, Cm*, Pluribus, and a

dual processor system. The program modules are assigned to processors in a way that

minimizes a cost function Z. Z consists of the sum of communication costs for all pairs of

communicating modules residing on different processors and the sum of execution cost for

each program mod.le at the processor on which It resides.

I,

,I

Section 8.2 - 186 - Initial Object Distribution

The paper implicitly assumes that the distance (or the delay) between every pair

of processors in the system Is identical (e.g., a fully connected network); this assumption is

not correct for most of the above systems, and not in our case. The cost function does not

make sense If the processors are identical since In such case its minimum Is obtained by

allocating all the program modules to one processor, Ignoring the rest of the available

resources, and that is not the paper's intent. In most of the above systems however, the

processors are Identical. The paper primarily deals with two and three processor systems,

thus, the results are not applicable to our case.

[Je-77] deals with a similar problem but does not take into account storage cost,

and as [St-78a] Implicitly assumes equal distances between every pair of processors In the

network. The method of finding the optimal distribution is simila. to that of [St-78a], finding

cut sets in a weighted graph (the arcs are weighted) yielding a minimum total weight. The

underlying model does not capture the problems we try to solve, therefore the results are

not applicable to our case.

[Mo-77] deals with optimal distribution of programs and files in a network. The

cost function consists of communication cost terms and storage cost terms. The paper

assumes that program storage cost Is negligible In comparison to file storage cost and

solves the problem by decomposing It to individual file minimization problems. (The

justification of the decomposition is given In another paper.)

I. The results cannot be used for our case due to several reasons. First, In our case

the problem cannot be decomposed analogously to their case. Second, their storage cost is

simply the sum of the storage cost of each fie in the node on which It resides. If we use

1 .

Initial Object Distribution - 187 - Section 8.2

such a simple storage cost function In our case, then the storage cost function is constant

for a given program since all processors are Identical. Assigning all objects to a single

processor will always result in minimum communication cost, and therefore in minimum total

cost. Such a degenerate fixed solution is not acceptable in our case since It does not

exploit available computational resources.

8.3 The Cost Function

The distribution problem is carefully analyzed in the following sections. The

results are not limited to the context of EBL therefore the discussion proceeds in more

general terms; the corresponding terms of EBL or our implementation scheme are given when

necessary. We first define several concepts which are used in the sequel.

The processor graph PG (N, A) is an undirected connected simple graph

representing the processor network. Each of the p processors is represented by a node in

N, and each link is represented by an arc in A. A distance 1 is associated with each arc

(assuming a constant delay between any directly connected processors). From the

processor graph the distance matrix D can be constructed. The element Duv of D

represents the shortest path distance between nodes Pu and Pv in PG. Note that D is

symmetric and Duu=O for all u. D can be constructed In polynomial time; an O(p 3) algorithm

which also produces the shortest paths (not only their lengths) Is described in [Re-77b].

The comPutidcation graph CG (N', A') is an undirected (not necessarily

connected) simple graph having n nodes representing the objects In the system and their

Interactions. A non-negative Integer cost is associated with each arc In A', and a

non-negative Integer weight WI is associated with each node In N'. The arcs costs can be

I,

Section 8.3 - 188 - The Cost Function

represented by a symmetric cost menfix C. The element Clj of C Is the cost associated with

the arc connecting nodes I and J. If there is no arc connecting nodes I and j then Cij=O;

Cii=O for all I since CG Is a simple graph.

For each EBL program a communication graph can be created. The nodes are

corresponding to the program objects whom we wish to distribute In the network (ECM's,

EHM's, and scripts of event handlers). An arc between nodes i and j indicates that objects

I and j communicate with each other. Cij represents the communication cost per unit

distance between objects I and J. Wl is the weight assoclated with object i; it may, for

example, represent its storage requirement, its CPU requirement, or any combination of

these two factors.

In the sequel, the following notation Is used: n represents the number of nodes In

CG; p represents the number of nodes In PG; I, j are nodes In CG; Pu' Pv are nodes In PG

(however, they may also denote the corresponding processors In the processor network);

P(i) is the node In PG to which object I is assigned (or the corresponding processor).

Our goodness criterion for a specific distribution will be the value of a cost

function Z which we try to minimize. Z consists of two parts: Zc the communication cost, and

ZI the processor load cost; Z=Zc+Z. We assume that Zc has the following form:

Zc a (1/2) E- CijDp(i)p(j)
I'j

Note that if objects I and j are assigned to the same node In PG the contribution of their

communication to Zc is always zero. The processor load cost ZIs the sum of the individual

processor load cost ZIP over all nodes in PG; i.e., ZI Zip. There are many reasonable

Pu
ways to select Zip. We shall not select a specific function; instead we assume that it

-

The Cost Function - 189 - Section 8.3

satisfies the following conditions:

1. weight: Zip Is a function of Wi; where I ranges over the objects assigned to

the particular node of PG.

2. Integrity: Z1I(X Is defined for every non-negative integer, and assumes only

non-negative integer values.

3. threshold: Z1p(X)=O for every non-negative integer X(W T . The non-negative

Integer W T is the threshold of the function.

4. monotonicity: Zp(X+1) > Zlp(X) for every integer X>WT. This reflects that

Increasing the total weight on a processor (above the threshold) implies an

Increase In that processor's load cost.

6. concavity: ZIp(X) + Zip(X+2) > 2ZIp(X+1) for every integer X>WT+l. This

guarantees that if the total weight at Pu is heigher than the total weight at Pv'

moving an object from node Pu to node Pv does not increase the total processor

load cost ZI.

6. polynomial: Z1p(X) can be computed in deterministic polynomial time in the length

of X.

Some examples of Zip are:

(1) Zip(X) = I 0 X(WT
M+X-W T X>WT

(2) Zip(X) = 0 (XSWT
(X-WT)M X>WT

() X 0 XSWT

(3) Zip(X) (X-WT) 2 X>WT

where WT is a noo-negative Integer and M la a positive integer. In the sequel, a cost

"II

Section 8.3 -190- The Cost Function

function means a specific cost function satisfying the previous cOnditios The coat function

may have several parameters: WT is one parameter; M is an exawple of another one. Note

that the evaluation of Z for a given object distribution can be done by a deterministic

polynomial algorithm.

8.4 The Object Distribution Problem

In terms of the previously defined graphs, an object distribution Is the

association of each node of a given CG with exactly one node of a given PG. The problem

we are trying to solve Is the following.

The Distribution Problem:

Given a CG, a PG, a cost function, and the cost function parameters; determine the object

distribution with minimum cost (the optimal distribution) Z.. A closely related problem is the

following.

The Distribution Decision Problem:

Given a CG, a PG, a cost function, the cost function parameters, and a positi Integer b;

determine whether there exists an object distribution of cost at most b.

In practice, the object distribution may have to satisfy some constraints. An

example of such a constraint is an object which must be assigned to a specific node of the

PG; e.g., an ECM corresponding to a system event class Identifier associated with some I/0

device. Handling such constraints should not be difficult and we shall not treat them In the

sequel.

:1

-] I I Il-~il m~m m mm'mm

ADOI90 MSSCUET NT OF TECH CAMBRI6E LAB FOR COMPUTE-ETC F.'B 9/A

THE EVENT BASED LANGUABE AND ITS MULTIPLE PROCESSOR IMPLEMENTAT-ETC(U)
JAN 60 A REUVENI NOOOI-75-C-06B1

UNCLASSIFIED
MIT/LCS/TR-263 E mEEmmnEEE

EEEEkh~E
-Elllllllllllu
-"IEEE'..'..l

EE.'.'E.lll

I3 111111 -
IIIIII,.o

MICROCOPY RESOLUTION TEST CHART
N T ON I M A O f I A N lf .l, , .

.

The Object Distribution Problem - 191 - Section 8.4

Let us Informally Introduce several concepts which are used In this chapter;

formal definitions can be found In [Ga-79]. NP is the class of all decision problems that can

be solved by polynomial time nondeterminlstic algorithms. A decision problem P Is

NP-complete if it is in NP, and all other problems In NP are polynomially transformable to P.

A problem P is NP-hard if there exists some NP-complete problem that Is polynomially

V_ transformable to P. An NP-hard problem is at least as hard as any problem in NP.

Theorem I

The distribution decision problem Is NP-complete.

Proof: We first show that the Hamiltonian circuit problem (Does a p node undirected graph G

have a Hamltonian circuit?) is polynomially transformable to the distribution decision

problem. We construct a PG G' by converting G to a graph satisfying the requirements of a

PG. First, all parallel arcs but one connecting any two nodes, and all self loops are

eliminated. Second, if Q consists of q connected components then q-1 arcs are added to

convert it to a connected graph. Note that G' has a Hamiltonlan circuit iff Q has a

Hamiltonlan circuit. As a CG we construct a ring of p nodes and p arcs. Each arc has a cost

1 associated with it, and each node has a weight W associated with it. W and the cost

function parameters are selected in a way that guarantees that Z Is minimized by an object

distribution which associates exactly one node of the CG with each node of the PG. This

can be easily done since Z,<p2 . In particular, we choose W=WTRP 2 . Our transformation Is

clearly a polynomial transformation. In the optimal distribution, each node of the PG has a

i. -total weight W associated with it thus ZI can be calculated; we get ZINO, therefore Z.MZ € .

It is clear that Zmap Iff G' has a Hamiltonlan circuit, i.e., fff Q has a Hamiltonlan

circuit.

d r- . .m...... --.... .-[

Section 8.4 -192- The Object Distlbutim PIoblem

To show that the problem hi In NP we use the folowing algorithm which first chacees an

object distribution:

for I=1 to n do -0O(n)
. x, - €hafte (V1 ., P)

end

If Z(x 1 , .. , x, C, D) I b -Polynomial
then success
else failure

where the meaning of the primitives choice, success, and failure Is as defined In [Re-7Th].

Since the above algorithm is clearly a nondetermlnistic polynomllly bounded algorithm, the

problem Is In NP. This completes the proof of the theorem.

Corollary 1.1

The distribution problem is NP-hard.

We shall continue the analysis of the distribution problem in section 8.6. We now suggest

several related Interesting problems.

8.6 Network Desig ProUms

The problem of finding an optimal processor network configuration for a given

communication graph 6 is an Interesting one. If there are no Ilmitations on the number of

processors p and on the number of neighbors par processor one can build a processor

network Iomorphical to the communication graph or any network containing It. If a lmitation

on the number of neighbors per processor is added, the network described above can be

- modified by adding Intermediate processors for Increasing the number of Inks required by a

processor beyond the limit. A more Interesting problem is the one in which the total number

Ilk of processors Is limited to p. We shall define several related problem In the category and

1".. •

r - -- ~ -- -

Netwk Design Prolm -198- section 6&A

£flaly themi

1-Tie Mtorkn Problemt:

* Given a CG, an Integer pal, a cost function, and the oat function parameters; find a PG

having p nodes such that the cost of the optimal distribution for that @rob Is the minimum

* among aNl possible PS's.

Sokfilont Finding the optimal distribution Is not required In this prblm The optma graph Is

clearly a complete graph of p nodes (Not all problems are hard.) Wto tha the degree of

each node In the PG is not explicitly bounded (although an 1 plisi bound of p-I exist).

Probles In which the degree of each node is explicitly bounded are discussed shortly.

The Network-DIstrIbution Problem:

Given a CS, a positive Integer p, a cost function. and the cost function parameters; find a

* PG having at most p nodes and an object distribution for that PG such that the coat of this

object distribution Is the minimum among all PGS and all possible object distributions an

them. The difference between this problem and the network problem Is that here findin the

object distribution In required. The following is a closely related problem

The Mewr Decision Problems

Given a CO, a positive integer p, a cost function, the cost function parameters, and a

positive Integer b; determine whether there, ests- a PG having at matI p nodes such that

the cost of the optimal distribution for that graph Is at most b.

By adding to the above problem the additional constraint that the degree of

each node in the PG can be at most Qk2 we get the following p oblems:e- O imted

neiW~r nstwork-sllstributon probiem, and the limited neigbors naftwk decision

1L

section 8.5 - 194- Me ton~ Ossig Problems

Theorem 2

The network decision problem Is Pcmpee

.Proof: We first show that the partition problem (Given a sequence of n Positive Integers

S=(Si,., Sd~ with sum 2K; Is there a subsequence of S that sums to exactly K?) Is

polynomlally transformable to the network decision problem. As a CO we construct a ring 6

of n nodes and n arcs. The weight associated with node I Is W,=8 1 n.1). Each arc has a cost

1 associated with It. We choose p=2, ban, and WrK(fl~l). This In clearly a Polynomial

transformatIon. If S has no partition then the cost of the optimal solution Z.In at least ni.1.

This follows from the monotonicity of Zip(X) and from the fact that the lo-wet possible

Increment In X Is n+ 1.

zm n 1ff there Is a subset of the nodes of Q whose weights sum to exactl

K(n.1); ILe., 1ff S has a partition.

To show that the problem Is In NP we use the following algorithm:

1. (Choose a graph (define arcs) _0(p2)

for usl to p do
arou * false
for vuu1 to p do

arcUW01 coice ((true' false))
Wow~ arcuv

end

2. Prepare the distence matrix D -0(p6)

Network Design Problems - 196- section 6.

8. { Choose an object dstribu

for I1m to n do -0(n)
- dhoie (,..., p))

and

It Z(xI. ..,xn, C, D) S b ..poaynon

thess ae191180 failur

} 8ince the above algorithm Is clearly a nondotormbstic pohmnonidly bounded adoodthm, the

problem Is In NP. This completes the proof of the theorem. Note that the p problem

could also be used In proving theorem 1.

Corollary 2.1

The network-distributon problem Is NP-hard.

Corollwy 2.2

The limited neighbors network decsion problem is AP-complete.

t CoroNary 2.3

The limited neighbors network-dIstribution problem Is NP-hard.

&.8 Approxbnte Algorilun

The results of the previous sections motivated examination whether deterministic

*polynomial time approximate algorithms can be found to our optimization problems. First, let

us define several terms (adapted from [Ho-78b]). Let Z be the nst of an ptmal solution

J- . to an Instance of an optimization problem P. Let ZO be the cost of a salukm to the sae

Instence of P obtained by an approximation algorIthm A. A Is an a-aproxwa elgortitm for

a problem P Iff for every Instance of P, - a- for some constant . An e-qpproxlremr
NZB

L &.~ " ~ -" . - --

_ _-- = - -- .

stien 6.&a6-~r~sM.

prohlw,, Is a relaxed version of a given optimbzation problem P In which a eabmI. give by

an @-approximate algorthmur Is required.

Theorem 3

The a-a pproximate distribution problem In NP-hard for all 00.

Proof: We show that the partitiont problem i polynomlally transformable to the -approximate

distribution problem. We use the construction In the proof of theorem 2. The welegt

associated with node I Is W1 S(n~l X 1+ al). Each arc has a cost 1 associated with It. We

choose p=2 and W~raK(n1)(1+rsl) Analogously to theorem 2, ZO I n 1ff the setS3 has a

partition.

If S has no partition then the cost of the optimal -olutlon Z Is at least

(n.1xl. ei) This follows from the monotonicity of Zip(X) and from the fat that the lowest

possible increment in x is (n.1)(warn) If S has a Partition but the approximate algorithm

does not return the corrspoing2 object distribution but a worse one, then the oust ZO Is

again at least (nox)wen1) This solution Is niot an e-approximate solution since:

Z'-Zm (ii~ixi~ri)-zm .jn0)(1+r1i)-(n+1) L ~ ~;Ie., ZO-Ze

Therefore, the only solution approximating a solution with cost Z. I n (W S has a parttio)

also has the same cost Thus, ZO S n 1ff the set S has a partition. This epete the proof

of the theorem.

Theorem 4

The @-approximate network-distribution problem In NP-hard for al 00.

Proof: The proof Is Identical to that of theorem S

Approximate Agorithms -197- Section 8.6

Co~ay 4.1

a~a The *O -approximate H ltd neighbors network-distribution problem Is NP-hard for

8.7 Hmwhstc Object DINUtMo Algorilun

In this section we resume the Investigation of the distribution problem. The

Problem was shown to be NP-hard thus we resort to heuristic algorithms. We will present

several algorithms finding good object distributions (althouigh In general not the optimal

distribution) and discuss their time complexity.

The common characteristic of all our algorithmis is that they are two phase

algorithmsa. The first phase consists of finding some Initial object distribution. The second

phase is Identical in all the algorithm; It Improves the Initial distribution obtained by the first

phase. We first describe the second phase algorithm, the distribution improvenwit

&.7.1 The D~sbton h.1ovemnsnt Algorlmn

The algorithm Improves a given object dist-Ibution by trying transformations of

M~td types on the given distribution asln sthe cost function can be decreased.

I1. Calculate Z, st change - false.

2. Search for the first object whos movement to another node In PQ decreases Z.

a. N no such objets found set . 2sand goto stop3.

b. 1f an object Is found, mtove ft, calculate Z, se change .. true and goto

stp2.

S. ItKM, then gotostp 5else top 4.

Section 8.7.1 - 198- The Distribution Impovement Algorithim

4. Search for the first set of K objects whose Interchange decreases Z.

a. If no such set Is found, set K - K1 and goto step 8.

b. If a set Is found, Interchange the objects, calculate Z, set

change true and goto step 4.

.if changeutrue and Km)1 then set change * false and goto step 2, else

terminate.

The Integer Km a I Is a parameter of the algorithm; the algorithm tries to

Interchange at most Km objects In one step. K m can be chosen according to the desired

degree of effort after examining the time complexity of the algorithm. It can be chosen as a

function of n and p such that the algorithm terminates in reasonable time. Since we only

deal with Integers and since each time the object distribution is Improved Z decreases by at

least 1, the algorithm Is guaranteed to terminate after at most Zo improvements; where Z. Is

the Initial cost computed at step 1. The time complexity for Kml is determined by step 2

of the algorithm and Is O(ZOnp). The time complexity for K,> I s determined by steps 2 and

Km Km-1
4 and Is O(Zen"ntZnp) a O(Zen(n +p)).

Algorithms which try harder then the above one can be devised; e.g., instead of

just interchanging up to K. objects, moving up to Km objects. However, the complexity of

such algorithms cannot be justified especially since phase one of the algorithm In expected

to generate good Inltl dietributlons.

jWe now present a sequence of Increasingly Improved (phase one) algorithms for

generating the Initial abject distribution.

1'.

,I,,

r .

ANIn One (AIO) -199- Section 8.7.2

8.7.2 AlN I One (A10)

This algorithm assigns aD objects to one node of the PG. A reasonable choice for

this node Is the wcenter m of the network which can be found by calculating for each node in

PG the function Lu . 1 D2v. The center is the node having the minimum Lu . Obviously
Vv

unless processor load cost Is negligible In comparison to communication cost, the AIO

algorithm presents the distribution improvement algorithm a bad Initial distribution, thus

forcing it to try hard (by choosing high enough K.).

8.7.3 Best Fit (BF)

The BF algorithm first orders all objects in an object list OL In some random order.

It starts with an empty distribution and assigns objects from OL to nodes of the PG one at a

time according to their order In OL (left to right). After each step only a partial cost

function ZP can be coas .ted since only some of the objects are assigned. (The

components of Z p are denoted by ZcP, ZT, and ZTp In the obvious manner.) At each step an

object Is assigned in a way which minimizes the increment AZP; i.e., the object is assigned

to the best possible place (or one of them In case of ties). (The components of AZ p are

denoted In the obvious manner.) The first object In OL is assigned to the center of PG (as

was previously defined).

The BF algorithm produces a better Initial object distribution to the second phase

than the A1O algorithm, but its weak point is the random order of the objects in OL; the next

algorithm to be presented improves this point.

*AN

1 .. " '

*@GOO &- 200- piral Beet Fit (88)

The SW algorithm Is Identical to the BF algorithm except that It does not order

he objot. In OL rundomly but tries to order them In some promising way. The order is beet

explailned in terms of an Infinite tree (which need not be constructed) derived from the CG

as folows. The first node of the tree is 0 such that ICj is maximum over eli L In case of

ties, one of the objects with maximum weight is selected. The sons of node j In the tree

are an Its immediate neighbors In the CG ordered by: (1) decreasing Cjk, then by

(2) decreasing weight Wk. OL is then constructed from the tree by a breadth first order In

which repetition Is not allowed. Since the CG may be not connected, the process Is

repeated for all connected components of CG and the obtained lists are appended to OL at

its end (the right side). The order In OL roughly corresponds to scanning the connected

components of the CG one at a time, for each connected component In rings of increasing

diameter centered around an Initial node of the component; i.e., In a spiral course.

The SOF algorithm assigns groups of communicating objects, thus as long as

processor load cost allows It such objects are expected to be assigned to close nodes of

the CS.

8.7.5 Lknited Search SBF (LSBF)

In each stop of the SBF algorithm AZ p is evaluated for aD p possble assignments

of the next object 01. The LSBF algorithm detects cases which occur in every instance of

the problem In which the search can be limited. Let us first define several terms. The

neighbors of 01 In the CS which precede It In 0L are called left neighbors. Node Pv of Pe is

said to be a K-ordor neighbor of node Pu If Duv-K (K20).

United Search SF (LSOF) - 201 - S0tio 8.7.6

In order to limit the searce when assigning 0 the nodes of the P are checked in

a certain order. The first node to be checked Is PuPz(Oj), where Oj in a left neighbor of 01

with maximum Cij over ail J. AZ P IS evailated first for Po. then repeatedly for K-order

neighbors of Pu for K=1,... In the worst case, all p nodes of the PG are checked. In the

following cases, the search can be terminated earlier.

(1) If for some node Pv, AZ- P z0 then 0 can be assigned to Po; no smEOle Change in

Zp can be found.

(2) If all left neighbors of 0i re assigned to one node (i.e., to Pu) and If asslgning 01

to some node Pv results In ZTpzO for Pv, then the best assignment so far cm be selected.

The reason Is that subsequently checked nodes cannot yield a smaller Z, md may yield a

higher Z4 (in comparison to Pv).

(3) In this case (and the following one) we assume that E Ck > 0 where k ranges
k

over the left neighbors of 0 . Let M be a positive integer; and lot S be the set Of nodes In

PG containing all K-order neighbors of Pu for K=O, ... M . Assume that when checking all

W-order neighbors of P. the following conditions are satisfied:

a. All left neighbors of 01 are assigned to nodes In S; lot these nodes be P1 ,..., Pj.

b. The assignment of 01 to each W-order neighbor of Pu resuits in Zip-0 for that

node.

Lot Dm be the maximum distance (according to the distance matrix D) between any W-order

neighbor of Pu and any of P1 Pj. The search can always terminate after checking

nodes up to and Including all M+Dm-Order neighbors of Pu, and the best assigmient so far be

selected. The reason Is that for any M-order neighbor of Pu,

r . . ' . . . i l. .. l

Section .7.a - 202 - Umfted Search 8SF (LSF)

ZP A P * c k

k
where k rares over all left neighbors of 0I. For L-order neighbors of Pu where L>M+D m,

AZ zI AzP > Di :ck

k
Checking the above conditions and keeping track of the needed values can be easily

Incorporated in the LSOF algorithm.

'.. (4) The previous case can be generalized by modifying requirement b to the following

one:

b'. The maximum AZIp resulting by assigning (I to M-order neighbors of Pu is AZm.

Let D m z Din + IAZmI X Cik1. The search can always terminate after checking nodes up
k

to and including all M+D'n-order neighbors of Pu and the best assignment so far be

selected. The reason Is that for any M-order neighbor of Put

AZP a AZP + AZT S) Cik + AZn S D-m E Cik
k k

The rest of the argument Is analogous to case (3).

8.7.6 Co4qAxty of the Algorfthms

The time complexity of the previously described phase one algorithms Is as

follows:

1. For AiO - O(n).

2. For BF - 0(np).

3. For SBF the time of the initial ordering of the objects must be Included. If theSI.
maximum degree of the CG Is d (expected to be a small number for ESL programs)

the ordering can be done by an O(nd log d) algorithm. The SBF algorithm In

therefore of complexity O(np nd log d) a O(n(p + d log d)). For most programs

1'>!
..

Complexity of the Agorithms - 208 - Section 8.7.6

and networks the ordering overhead Is therefore negligible.

4. For LSBF the maximum complexity is as In the case of SOF, but the average

complexity Is expected to be smaller.

The complexity of the distribution Improvement algorithm (the second phase) is

the dominating factor In the distribution algorithm (on Its two phases) for each of the

suggested phase one algorithms. Thus, selecting a more complex phase one algorithm (e.g.,

SF or LSBF) does not Increase the total complexity. Moreover, since such algorithms are

likely to present better distributions for the phase two algorithm, Zo is expected to be

smaller in these cases, and thus the total complexity Is expected to decrease.

8.8 Generating Initial Reference Trees

After the object distribution is found, reference trees should be created. Since

In searching the optimal distribution shortest path distances between nodes In PG are used

for calculating Zc, the trees corresponding to the object distribution should be shortest path

tree: the tree corresponding to object 00, which connects P(O) to P(0 1), ... , P(On) has

the property that the tree path from P(O o) to P(O) is a shortest path in PG for I- 1, ... n.

Shortest paths between all pairs of nodes in the PG are fourd while calculating the distance

matrix D, and these paths can be used for generating shortest path trees. To create a

shortest path tree connecting node P0 with nodes P1 , "'", Pn the following algorithm can be

used:

1. Create an Initial tree consisting of Po.

2. For Il1 ton

a. Select a shortest path connecting Po and PI.

1 L , , , , ,".

Section 8.8 - 204 - TenerauW uto em Trae

b. Starting at Pl towards Po. add node and am from the selected path

to the tree until a node already In the tree I encountered.

The fact that the reference trees corresponding to the initial object dribution

are shortest path trees Is important, If all objects are assigned to one processor at load

time (an approach we have rejected) they spread throughout the computation but It seem

that the resulting reference trees cannot be optimal since they are generated on the bais

of local decisions. [Ha-78] describes trees which are far from being optimal that may be

generated (although [Ha-79] describes better approaches).

In general, more than one shortest path may exist between two nodes in a graph,

thus, when creating the shortest path tree we may have a choice. Is there a goodness

criterion for choosing among several trees? The answer Is positive; a tree having the

minimum number of nodes Is the optimal one since It Involves the minimum number of

processors. This is a second order optimization but let us investigate It. The problem we

are trying to solve is the following.

The Shortest Path Tree Problem:

Given a PG Gz(N, A), a distinct node P. in N, and a set of nodes P ... ,P in N (Po 0 i P for

i-1, ... , n). The distance associated with each arc in A is I (according to the definition of a

PG); find the opt/m. shortest Path tree T; i.e., a tree connecting P0 , P1 , "",Pn satisfying:

(1) The tree path connecting Po and PI is a shortest path In PG for 1 ... , n.

(2) The number of nodes In T Is minimum among all trees satisfying (1).

A closely related problem Is the following.

IA

Generating Initial Reference Trees - 205 - Section 8.8

The Shortest Path Tree Decision Problem:

Given the same Information as in the shortest path tree problem, and a poeitive integer b;

determine whether there exists a shortest path tree having at most b nodes.

By adding to the above problems the additional constraint that the degree of

each node In the PG is at most L)3, we get the modified problems: the limited neighbors

shortest path tree problem, and the limited neighbors shortest path tree decision problem.

Note that if PG is a tree, all above problems are trivial since there Is only one

tree connecting the desired nodes. The limited neighbors problems can be easily solved for

L=2. In this case PG is either a tree (which can be drawn as a straight line) In which case

the solution Is trivial, or a ring in which case the solution is simple.

Theorem 5

The shortest path tree decision problem is NP-complete.

Proof: We first show that the set covering problem (Given a finite family of finite sets

S=(Sj), a positive integer K; is there a subfamily F of S (Fh} r (Sj} such that U Fh M U Sj

(i.e., S has a cover F) and F contains at most K sets?) is polynomially transformable to the

shortest path tree decision problem. As a PG we construct the following graph. The nodes

of PG contain: a distinct node P., corresponding to each set S a node $' , and

* corresponding to each element 0 i In U Sj (assume there are n elements in U Sj) a node Pl.

The arcs of PG contain: exactly one arc connecting P0 and each Sj; and exactly one arc

Io connecting S'j and Pi If 0, is contained in Sj. The tree T should connect P0 with P1 , Pn;

we choose buK. This Is clearly a polynomial transformation.

l• -

1 ,2 '

SectIon 8.8 -206- GeneaSn Reev no Tres

The number of. In T is at most n+IK If S has a oow F contoaft at most

K sets.

To show that the problem Is In NP we use the folowing algorithm which first selects a

subgraph T of PG by choosing arcs a (among the r arce of PQ) and the nodes with which

they are Incident:

for 1=1 tordo -0(r)

I -. choice ((true, false))
(ai-true means: arc I and the nodes with which It is incident are In T)

end

If T(al, ... ar) is a shortest path tree connecting P0 and P1 , "", Pn and
the number of nodes in T I b -Polynomial

then success
else failure

ince the above algorithm Is clearly a nondeterministic polynomlaly bounded algorithm, the

problem is In NP. This completes the proof of the theorem.

Corollary 5.1

The shortest path tree problem Is NP-hard.

Theorem S

The limited neighbors shortest path tree decision problem Is NP-compleot.

Proof: The proof Is similar to that of theorem 5, thus only the required modification will be

given. We reduce the Imited set covering problem (the set covering problem with the

additional constraint that ISjI S 3 for al J); this problem I NP-complete [Go-TO]. The

I. construction Is similar to that in the proof of theorem 6; however, Intermediate nodes are

added to satisfy the lImited neighbors requirement; we choose LI4.

* '

GeneraWng Initial fearence Trees - 207 - god &A5

We first add nodes to the set of nodes (81j) to oplt K{S 11 th e neMes

higher power of two Mw2m (ruch that M22); the resulted extended set In V. We then add

between node P. and nodes In 30 M-2 Intermediate modes that together wM h and the

nodes In SO form a constant height (in) rooted binary tree (the root Is P.) In which every

Intermediate node has two sons. We require that the tree T connects P. wM g U- 2

Intermediate nodes (in addition to the rodes P 1., Ps).

An arc which previously went from node S'j to node P, n=w goes to an

Intermediate node Pjj. The graph under construction should connect node P, wAdS rode Pjj fo

all J. The lted neighbors requirenent Is handled anaiogously to the way P. was handled.

First, for each 1, nodes are added to the set of nodes (Pjj) to copl, n I(Pjj)jINt the

nearest higher power of two NJ (such that N, k 2). Then, a constant heli biary tree Is

created whose root Is P, and whose leaves are the above N1 nodes. The height of this tree

Is hiog"2 MI (where hi Z 1). This completes the construction which is clearly a plynfomial

transformation. Observe that the number of arcs on any shm oet path cmc nodesa P0

and P1 Is exactly m~h1.

The number of nodes In T is ait mostE hi 4(M-2).1+k - h, *M-I A I 8 has a

cover IF containing at most K sets.

The other direction of the proof Is Identical to that of theorem .This compltes the proof

The liited neighbors shortest path tree problem Is NP-hard.

LU 9

Section 6.9 - 2068- A NoembU W Tree Algoorin

8.9 A Iexsl hifWIN Tree Alpiu

This section presents a heuristic algorithm to the shortest path tree problem The

problem is a second degree optimization In the context I whch it erlee I our

Imiplemenltationl scheme; thus. we will only describe a simple algorithm First assume that

the algorithm for calculating the distance matrix D also produces for each Pakr of nodes I

PG a list of all nodes Included In at least one shortest path connecting them. Then, observe

that the desired tree T Is contained In the subgraph of 6 Induced by the nodes Po- PI

Pn and those In the Nosts associated with the pairs (Po-. P11)i , (Pw~ Pn).

The algorithm operates on this subgraph Q Instead of on the whole PG. Let SP

denote the set of nodes P1I,..... PW. The algorithm attaches a wegt Wi to each node In Q. If

shortest paths from Po to K distinct nodes I SP pass through node I whose distance from %0

Is d, then Wis(K-1)d; and the set of K points In denoted by SPI. WI represents the possible

saving In the total number of nodesi In the tree If the paths to the K nodes in sp1 coincide up

to nods 1, In comparison to totally disjoint paths. The algorithms Is the following:

1 . If nul then goto step 4, else proceed.

2. For each nods I #n 6 evaluate WI. Lot node j be the node having the maximum

weight associated with It.

S. if Wj 0 0 then goto step 5, else proceed.

4. Here all shortest path* are disjoint Return a tree containing an arbitrarily chosen

I. path to each node In SP.

6. Recursively break the problem Into two Instances of the shortest path tree

b. problm and merge the resulted Woee. The two Instances aret

a. The distinguished node Is 11P the new met WP Is SP - SP) U (node j).

A Heuristic Initial Tree Algorithm - 209 - Section 8.9

b. The distinguished node is node J, the now set SPI is SPj - (node J).

The algorithm always creates a shortest path tree, although not necessarily an

optimal shortest path tree (as defined in the previous section). in order to see why the

algorithm always creates a shortest path tree observe the following: For any two nodes A

and B In an undirected connected graph, the length of the shortest path between nodes A

and B Is equal to the length of the shortest path between node A and node C plus the length

of the shortest path between node C and node B, for any node C Included in some shortest

path between nodes A and B. The algorithm either returns a shortest path (in step 4), or

breaks a path into two parts as described above (in step 5).

The algorithm seems to work fine on many toy examples since the weight function

criterion captures nodes which are good candidates for being points at which a path splits

to several paths. The algorithm fails in certain cases; one reason is the breaking of the

1 problem Into separately solved subproblems. This approach decreases the complexity of the

subproblems therefore causes the algorithm to converge relatively fast; however, It lacks

global overview and that Is Its main drawback.

The complexity of the algorithm is determined by step 2. Assume there are p'

nodes In G (the subgraph of PG), then the time complexity of step 2 is O(npl). Note that

* p' a n+1; if nal then step 2 is not executed. The maximum number of Instances of the

problem generated by the algorithm for which step 2 In executed is at most n-1, thus the

SI, overall complexity is at most 0(n 2 p'). The average complexity is expected to be lower

since when an Instance of the problem results In Wj-O no new Instances of the problem are
" " created.

1.:.
r *

Secton 6.10 -210- Perfbrmeme EvawUm'

8.10 Peom Evehmition

Appendix B develops bounds on the performance of a certain class of ElL

programs on a network. We use the throughput of a program (the rate in which events from

a distinguished event class are used) as a performance measure. The analysis assumes

that various objects propagate In the network subject to constraints on link capacity and

CPU capacity. The constraints and the function to be maximized define a linear programming

problem whose solution yields the maximum possible throughput. The analysis tI done first

without assuming a specific Implementation scheme, and then taking into account our

manager based Implementation scheme.

8.11 Summmary

This chapter has further Investigated the problem of Implementing EGL on a

processor network. A goodness criterion for the distribution of objects in a network has

been developed, and several optimization problems Involving the distribution of objects In a

network has been analyzed. The problems, and even approximations to these problem, are

NP-hard as we have proved In this chapter; several heuristic algoltms have been

developed. The analyzed problems are not restricted to the context of EBL; they am of

general Interest.

L

I.

VN

Data Flow Impleisentation - 211 - section a

9. Dats Flow h Ipleantdetion

This chapter Investigates strategies for implementation of EEL on a data flow

processor. A data flow processor (e.g., [Do-77]) Is designed to achieve a highly parallel

operation and Is therefore a natural candidate for implementin EEL which contains many

sources for parallelism. A data flow processor Is a special processor designed to run

programs expressed as data flow schemata In a (graphic) data flow language. Its principal

characteristic Is that Instructions are executed In response to the arrival of their operands

and there Is no notion of sequential control flow.

The architecture of a data flow processor In noot unique; as a concrete example

this chapter uses the architecture Investigated at MIT/ICS Computation Structures Group.

The architecture of the basic data flow processor as well as the various types of actors

and arcs In a data flow schema are described In [Do-77]. Figure 9.1 depicts the basic data

flow processor.

rod0- ae

figure 0.1 The basic dafta flow processor

Section g -212- Data Flow 1mplem

Several extensions to this base processor have been Investigated: [Ac-77] deems.be

adding a structure memory to the processor; [MI-77] and [We-79] describe adding

procedures to the processor. We wiN start with the basic data flow processor and exe

the extensions needed In order to support EBL programs.

The discussions In this chapter will be conducted at two levels: the schema level,

and the processor level. The first allows one to abstract out details, and the second

explicitly deals with them. We assume that the reader Is familler with the main concepts of

both levels.

Activating an instance of an event handier brings to mind activating an instunce

of a procedure. Activating concurrently several Instances of an event handlier Is akin to

activating concurrently several instances of a procedure. Unfortunately, the basic data

flow processor does not support procedures. Since procedures and recursion can be easily

expressed In EBL, any successful implementation of EBL on a data flow processor VA

actually add these features to the processor. Similarly, solutions to the procedure problem

may make the effort of Implementing EBL on a data flow processor easier.

Naturally, we have studied the existing proposals for adding procedures mmd

recursion to the data flow processor [MI-77, We-79]. The principal difficulty In

Implementing procedure calls on a bask data flow processor stems from the fact thst the

representation of programs In the processor Is impure [Mi-77]; I.e., an actor and Its ipt
I.

tokens are stored together in the Instction memory. Thus, In order to support concurrent

activations of a procedure one cannot simply allocate a distinct working area for esah

instance of a procedure. A reeonale approach Is to copy the procedure body (or the

1.

Oats Flow Implementation -213 - Section 9

needed parts of it) for each activation of a procedure while relocating Its addresses;

relocating is needed In order to prevent undesired Interactions between several Instances

of a procedure. This approach was adopted by both [MI-77] and [We-79].

The common characteristic of both schemes is that they incrementally copy the

needed parts for each activated Instance of a procedure; thus, the cells associated with an

unselected conditional branch are not copied. Both schemes use a virtual memory and some

cache mechanism. [MI-77] solves the relocating problem by using a centralized box which

maintains a list of free unique identifiers. A unique Identifier is associated with an Instance

of a procedure and Is used as a suffix appended to cell names. [We-79] relies on the

existence of a structure memory and uses unique identifiers whose maintenance is

distributed In the processor and not centralized In contrast to [Mi-77], For each procedure

instance an activation record Is created in the virtual address space; the starting address

Is based on a unique Identifier. Both schemes also add special actors to the data flow

language for supporting procedure activations. [MI-77]'s scheme allows starting execution

of the Instance of the procedure even before all parameters are available. If we summarize

the main mechanisms added to the basic processor by the two schemes we get the

following:

1. A memory system In addition to the Instruction memory.

2. Structure processing capability (in [We-79] only).

3. Cache mechanism (or memory hierarchy).

4. Address mapping (or relocating) mechanism.

5. Unique identifiers mechanism.

6. Special function units for handling procedure calls.

12"'"

II . .rr l m I i I M _

Section 9 -214- Data Flow Implementation

The above mechanisms are essential to the two schemes. The question arises whether one

really has to add these mechanisms to the basic data flow processor and to copy a

procedure body for each procedure activation in order to support procedures and recursion.

The answer will be clear after our Implementation schemes are presented in the following

sections.

9.1 The Processor Arcitecture

The main effect of allowing recursive procedures in a language is that a program

may use unbounded storage. This Is one of the reasons why both [Mi-77] and [We-79]

added a memory system (whose address space is much larger than that of the instruction

memory) to the basic data flow processor. Since recursive procedures can be easily

expressed In EBL, the need for such a memory system seems clear. From another point of

view, an event list In EBL can grow beyond any bound, and this suggests that event lists be

kept in a memory system which should be added to the basic data flow processor. Following

this approach, the modified data flow processor assumed in this chapter will have Ua

architecture depicted In Figure 9.2.

I.

r t-

The Processor Architecture - 215 - Section 9.1

*1 ~ o Intuto I~rto

Newr Mom ewr

r - - - - - - - - - - - - -- - - - - - - - - - - -

coto oeai
pakt paktIakt

Netor

Memor

Cotolr a

comn FreCllrsl

p cesp c es

Netor

Memoryuto MmryAlbto

Figre .2 hebasic data flow processor with the memory system

The memory System is described In detail In section 9.8; It Is similar to the one

suggested In [Ac-77]. An operation packet destined to the memory system arrives at any

* one of the Identical memory controllers. Each memory controller can handle several operation

~ .b.packets concurrently. For each operation packet It normally exchanges one or more

packets with the selected memory modules; It has access to all memory modules. Several

section 9.1 - 216- The Processor Araldtmcture

result packets can be sent to the instruction memory In response to one operation packet.

Packets generated in the memory system, carrying boolean values or signals, are sent

through the control network analogously to the way such packets are handled in the basic

processor; other packets generated in the memory system are sent through the distbution

network. The free cell network supplies free storage cells to memory controlers The

memory controllers are "smart" controllers; they accept packets such as: write, read n

words, Insert a list element, delete a list element, get a free storage block, etc.

The following sections present several strategies for implementation of EBL on

the data flow processor. The common characteristic of these strategies is that they

basically follow the virtual system implementation scheme outlined In chapter 7; this ammon

part of all Implementation schemes is not repeated in this chapter. The main difference

between the various strategies is the extent to which possible parallelism within a program

is exploited; in particular, how many concurrent Instances of an event handler are

supported.

9.2 The One at a Time Scheme

This section presents a very simple operation mode of an EBL programL In this

mode, at most one Instance of each event handier Is active at any point In time. indeed, this

mode does not meet our design goals since even the most straightforward form of

parallelism in an EBL program is not exploited. However, this scheme exposes some of the

problems posed by the underlying processor architecture and is upgraded In later sections.SI.
One must observe that this mode of cperation is semantically correct. Even though at any

point In time several event collections may match an event handler heading, and thus more

.*1"h.

The One at a Time Scheme -217- Section 9.2

than one Instance of that event handler could be active concurrently, an EHM can activate

the Instances one at a time; i.e., an Instance of an event handler Is not activated as long as

a previous Instance of that event handler Is still active. The programmer has no way of

forcing an EHM to activate more than one Instance of the corresponding event handler

concurrently. (In fact, even the more extreme mode In which at most one event handler

Instance is active at any point In time for the whole program is also possible; however, we

' shall not p'irsue this approach.)

In this scheme, each script and each manager are simply represented as data

flow schemata containing several special actors. A script can be viewed as a single Input

single output schema. The input token, generated by the EHM, represents the activating

event collection. The output token is a signal to the EHM Indicating that this Instance of the

event handler has terminated. A script schema contains several kinds of actors.

1. Conventional actors: used for example for evaluating event parameters; these

actors are implemented by function units.

2. Memory actors: used for example for reading parameters of activating events,

for getting free storage blocks for preparing new event objects, and for writing

parameters of new events; these actors are Implemented by memory controllers.

3. Actors used for sending messages to ECM's.

Obtaining free storage blocks for events to be caused by an Instance of an event handler

need not be done by the Instance of the event handler. The EHM can prepare the memory

blocks In advance and pass them to the Instance of the event handler when It Is activated.

This scheme decreases the execution time of the Instance of the event handler but Imposes

an additional task on the EHM. If EHM's are not continuously busy, this scheme can decrease

I.-

Section 0.2 - 218 - The One at a Tin Scheme

the execution time of the whole program.

A message can be Implemented simply as a contiguous block eithe In the

Instruction memory, or in the memory system. Passing a message Is reduced to passing a

pointer to that block. The receiver decodes the message by examining its fields. The Input

to a script schema and messages to ECM's can be represented In this form. Actors for

sending messages to ECM's are used both in scripts and In EHM's. The input to such an

actor is a message containing a field defining the expected operation, as well as additional

information depending on the requested operation.

When the requested operation is "add an event object to the event lst" the

additional information Is a pointer to a memory block containing an event object which has

been prepared by the Instance of the event handler. The output ot the actor In this case Is

a signal token Indicating that the actor's operation has been completed. As a side effect

the actor normally adds the event object to the corresponding event list If the event is of

a non recurrent type It may not be added to the event list; however, even in such a case

the actor outputs a signal token. By defining the actor in this manner It becomes

determinate, i.e., It outputs the same token when activated with the same Input tokens. In

fact, all actors In a script schema are determinate; this property is used In section 9.4.

In contrast to a script schema, a manager schema represents a cyclic process.

This process receives requests from several sources; these requests are nondeterminately

merged to one stream of requests and then manipulated. In order to implement a manager
1.

on a data flow processor one should first analyze several problems; for example:

1. How to merge requests from several sources?

h.

J-

The One at a Time Scheme -219- Section 9.2

2. Where and how to keep the state of a process?

The next section Investigates these problems.

9.3 Some Basic Problems

This section analyzes several basic problems which are encountered not only in

the one at a time scheme, but also in the more efficient ones. Similar problems are likely to

occur In the Implementation of many schemes Involving concurrent processes on the data

flow processor. This section suggests several modifications to the basic data flow

processor.

9.3.1 The Merge Problem

The need to merge messages from several sources Into one sequence of

messages (i.e., to serialize the messages) arises in EBL In case of managers. For example,

an ECM receives messages from EHM's and from instances of event handlers. There are

several difficulties. First, a message may contain more than one field. Consider a naive

solution in which a source sends each message field as a separate token to a fixed place In

the schema which is determined by the message field and the receiver. In general, this

solution does not work since the order of tokens In each of these places may not be the

same. For example, in one place the token corresponding to a message from source A may

precede the token corresponding to a message from source B, and in another place the

reverse order may exist. The receiver which presumably takes one token from each of the

two places may therefore process fields of different messages as one logical unit.

Therefore, an undesired Interaction of message fields (tokens) may occur. This difficulty

can be easily dealt with by assuming that the message source (the sender) always

|- -. .

Secton 9.8.1 -220 - The Merg Prblem

prepares the message fields In a contiguous memory block and the message Itself only

contains a pointer to this block. The receiver, after obtaining a pointer accesses the various

fields by using addresses relative to that pointer.

The second difficulty Is that the sources may not be fixed, and the number of

sources may vary and is not bounded In general. We first give a solution to the merge

problem assuming fixed sources and then give a solution assuming varying sources.

Fixed Sources

Let us first deal with the case where there are n fixed sources S, ... , Sn . Assume that we

have at our disposal a nondeterminate merge actor (see for example [We-TO]) having n

Inputs. Can the schema of Figure 9.8 solve the problem?

8,

?

Figure e.g A nondeterminate merge

At the schema level the solution works fine. In Its direct translation to a data flow procesor

program, the merging Is obtained for free: the destination address In the Instruction cel

representing S1 is R for ia1, ... , n. Unfortunately, this direct translation may not work. The

reason Is that due to congestion of packets In the distribution network deadlocks (which are

better called conge ion deadlocks) can occur. The problem has been analyzed In EMI-76];I.

the solution Involves sending signal tokens as feedback from an actor to actors supplying Its

input tokens. Applying this Idea, the schema of Figure 9.4 can be used to solve the problem.

1:

r-

The Merge Problemi - 221 - Section 9.3.1r -- -- ...-- -
, a
S a
I ... I

I---- --- --I S

Figure 3.4 Safe nondeterminate merge

An arbiter arbitrarily chooses an Input arc carrying a token and passes the token

to the corresponding output when Its signal Input Is enabled. When a sig actor fires a signal

token Is created; dashed lines represent arcs carrying signal tokens. When the receiver

accepts a token at R, It returns a signal token at Rs by means of a s4v actor (not shown In

Figure 9.4). Note that here the operation of the merge actor can be really obtained for

free. If the fan-in of actors Is restricted (e.g., to 2), as Is the case when one wants to

represent each actor by at most one Instruction cell, a schema for merging n sources can be

easily constructed from limited fan-in merge subschemata.

Varying Sourcea

Here, the sources need not be fixed and the number of sources may vary and Is not

bounded. In this case, we would like to have a merge actor with variable number of Inputs,

with the ability of cancelling an Input which will not be used any more by the source to

which it was allocated; or the ability of reallocating an Input to a new source. Without such

abilities the number of Inputs to the actor may grow beyond any bound even If the number of

sources at any point In time Is bounded by some fixed number. We do not have a direct way

r

Section 9.3.1 - 222 - The Merge Pumle

of Implementing such a fleaxible actor on the data flow processor; Instead, we uwe another

approach.

Merging by simply having the ame destination address at several cabl (the

sources) may cause congestion deadlock; our solution Is to confine the congestion to a

3PeCial area In the processor where It cannot cause the computation to haft due to

deadlock. A new distribution network, called the request networA6 In added as shown In

Figure 9.A

thereuet etokt their detnos ogsin triga h eusetwork maykpow

proagae bckard tothearitrtio newok; n odertoenat hs h rirto

1eWO Mn~

r - -re"

TheMe Prblm - 223 - Section 9.8.1

network Is split into two parts such that a congestion in the request network cannot cause

a packet destined to a function unit or to the memory system to be blocked.

The request network provides a means for avoiding congestion deadlocks

analogously to the way signals provide a means for avoiding congestion deadlocks; both do

not guarantee deadlock freedom since they may be used Improperly. In order to understand

what is the proper use of the request network let us define several terms. We view a

program as a collection of processes. A process can be cyclic or acyclic; it can be

temporary or permanent. A packet from process Pi to process Pj can be a request Rij;

requests destined to Pj are merged within Pj. A request Ail specifies some processing to

be done by Pj. Throughout this processing replies may be sent to Pi. The replies are normal

result packets or signals; however, requests sent to Pi are not considered to be replies.

We assume that the message associated with a request packet contains addresses for

sending the replies.

Any request R1i whose blocking may cause Pj to stop processing other requests

until Ai1 arrives Is a critical request. A critical request Ai cannot be sent through the

request network since It may be blocked by other requests destined to Pj or to other

processes. Let us examine the following condition:

R1. For all I J, in order to process any request All, Pi does not have to wait for

another request destined to itself, or to send any request destined to another

|o process and walt for any of its replies for completion of the processing of Rl.

If Rl is satisfied then there are no critical requests and all requests can be sent through

* the request network; no deadlock will result from congestion In the request network. Of

course, deadlocks due to congestions in the distribution network must be prevented; the

Section 9.3.1 - 224 - The Merge PrOblem

scheme of [MI-75] can be appled. Note that Pj Is slowed to commulncate with other

processes while processing a request but not by sending requests for which 'epliee are

needed In order to complete the processing of the request. Also observe that R1 Is a

sufficient condition but not a necessary condition. We shall see (in section 9.7) that

condition Ri Is satisfied for the application of the problem In our Implementation.

The request network can be more sophisticated than a regular distribution

network. A packet can specify as its destination one of k adjacent addresses. The

contents of these k destination cell registers can be merged according to the fixed sources

solution to the merge problem. This approach associates a k word buffer with a receiver of

requests and thus decreases congestion In the request network.

Another possibility for combining the fixed sources solution with the varying

sources solution occurs when out of the requestors of Pj there are n fixed sources and the

rest are varying sources. The fixed sources solution can be used for n+k sources, where k

Inputs to the arbiter are taken from the request network. This approach decreases

congestion In the request network, and in addition, the n fixed sources can be served

faster. Finally, note that the varying sources case of the merge problem occurs only In the

script copying schemes discussed In section 9.7; for all other schemes suggested the fixed

sources solution Is sufficlent and the request network is not needed.

I.

t r

The State of a Process e22t- icton 98.2

9.3.2 The Staft of a Proc.s

The basic data flow processer and the coresponding data flow language do not

contain adequate primitives for handling side effects. In fact. the data flow metdiclogy

avoids side effects. One can therefore expect some difficulties In Implementing variables;

e.g., state variables of a process. Our Implementation schemes Involve processes (e.g., the

managers) and this motivates our Interest in the problem.

At the schema level, state variables of a process can be kept as tokens

circulating In a cyclic subschema having the form of a feedback system [Le-79]; at the

processor level, the state variables are kept In the Instruction memory. In order to access

a state variable from n different places In a procss some Interface should be added to the

subschema; the size of this Interface increases with n. In addition to the space overhead,

as n Increases a token trying to access the process state has to peas more actors,

therefore the time overhead also Increases with n.

Since we have added a memory to the processor we can use its cals to contain

state variables In the conventional way. In order to access a state variable from n different

places In the process only read or write actors are needed without any additional

Interfacing actors. Moreover, If a state variable Is concurrently accessed from several

parts of a program some synchronization mechanism is needed n general; a way to

Implement monitors In a data flow schema is described In [Le-79]. By devising powerful

I|. enough memory Instructions of the flavor read-modify-write, the need for an additional

synchronization mechanism can be eliminated In our scheme In many cases.

Sectim 9.8.2 - 226 - The State of a Process

We next suggest by means of two simple examples several modifications to the

data flow processor; these modlflcations make handling of state variables in the instruction

memery more efflclent.

9.3.3 The Akrm Problem

Suppose several sources in a program can detect alarm conditions. Each time an

alarm Is detected by some source, It should write the alarm status In a fixed alarm status

word associated with the alarm handier process. The alarm status word Is periodically

checked by the alarm handler process which Is only Interested In the latest contents of the

alarm status word. The problem arises in our implementation schemes when several ECM's

signal an EHM that it can begin a search for matching event collections. One can view the

alarm status word as a state variable and treat it In one of the ways suggested earlier, but

more efficient schemes can be devised. Consider the schema In Figure 9.6.

A

igre Ie Last i et

Arc A Is a special arc of unlimited capacity. It lows the actor of which t is an output arc to

fire even If t carries tokens (in contrast to the normal firing rule). The order of tokens on A

Is preserved. UO is a special actor: when a signal token arrives at Its signal Input t waits

until there is at least one token on Its ~ arc; f then swallows all existing tokens on that

arc and outputs only the latest one. This Is not a LIFO (last In first out) actor, but a LIO (last

1.

r , - - -,-.. ,

The Alrm Problem - 227 - Section 9.3.3

in out) actor.

The schema of Figure 9.6 exactly solves the alarm problem; how can It be

translated to the data flow processor? The merging Is achieved Implicitly as was shown.

The function of the LIO actor can be obtained by allowing an instruction cell register to

operate in the following mode:

1. The register is enabled after receiving at least one packet.

2. The register is ready to accept packets addressed to It as long as the

Instruction cell Itself Is not enabled. The latest accepted packet determines the

current contents of the register.

3. The register Is reset after an operation packet leaves the enabled instruction

cell to the arbitration network (i.e., the cell fires).

9.3.4 The Multi-State Process Problem

Suppose a process (e.g.. an EHM) handles its Input tokens according to the

current state of its state variables; In particular, assume that the output of actor P should

be directed to either actor Q or actor R depending on the state of the process as can be

seen in Figure 9.7.

P

I. -js I

Figure 0.? Switching an actor's output

How can this behavior be achieved on the data flow processor? The problem can be

urn ,

Section 0.3.4 - 228 - The Multi-State Process Problem

treated as a regular problem Involving a process state as was discussed earlier. The state

of the process should be checked for each token output by P. If the state changes

infrequently relative to the frequency In which tokens are output by P, or If the decision

where to send the output of P changes Infrequently, then there Is redundant token

movement In the schema, or excessive packet traffic In the data flow processor.

An attractive way is to allow dynamic modification of arcs In a data flow schema.

One can specify that whenever an arc moves, tokens residing on it move with It. This

however, leads to nondeterminate computations and there Is no need to add another source

of nondeterminacy to our language. Thus, we shall assume that whenever an arc moves It

carries no tokens. This approach amounts to dynamic modification of a program. In general

this is a dangerous approach, but if t is done In a controlled and tested manner by system

programs or by output of system programs such as compilers (in particular, an EBL compiler),

t can be quite useful. In order to see how this can be implemented In the data flow

processor let us examine Figure 9.8.

!. Figure 9.8 bstnllon cell representation

From Figure 9.8 t Is clear that switching the output arc of actor P simply means

changing the destination field in Instruction cell P. Note that the assumption that the arc

Li

The Multi-State Process Problem - 229 - Section 0.3.4

connecting P and R carries no tokens means that the input register of R is empty, there Is

currently no packet in the processor whose destination is the Input register of R, and there

is no packet destined to a function unit or to the memory system which can yield such a

packet.

Allowing packets to be sent to the register containing the destination address of

a cell Is a simple task; however, this means that the register becomes a variable register.

Such a register is normally reset after the contents of the Instruction cell is sent to the

arbitration network (Da-77]. This may force us to loa1 (send a packet to) the destination

address register of cell P before each firing. This undesired behavior can be eliminated by

allowing an instruction cell register to operate in the following mode:

1. The register Is enabled after receiving at least one packet.

2. The register is ready to accept packets addressed to it as long as the

instruction cell itself is not enabled. The latest accepted packet determines the

current contents of the register.

8. The register is not reset after an operation packet leaves the enabled Instruction

cell to the arbitration network.

9.3.6 Instruction Cell Modifications

The modifications of the data flow processor suggested in the previous two

subsections can be generalized by allowing the Independent definition of the following

I. orthogonal modes for every field In an Instruction cell:

1. Reset mode: When off, the cell field is not reset after a cell firing and the latest

contents Is used. When on, the cell field Is reset after each cell firing and needs

1 ' . -

Section 9.3.8 - 230 - Instruction Cell M

a new packet in order to be enabled again (as an option, several new packets

can be specified Instead of one).

2. Ready mode: When off, the cell field does not accept a packet when the field is

not empty (this Is the current mode in the data flow processor). When on, the ceil

field is ready to accept packets addressed to it as long as the instruction cell Is

not enabled. The latest accepted packet determines the current contents of the

cell field.

It is Important to understand the effect of the modifications suggested above.

The data flow processor has primitives which allow data flow schemata to be translated to

It. However, It is more general than the schemata in the sense that computations which

cannot be expressed as date flow schemata can be represented on it. As an example,

suppose the only available actors are Identity actors. The schema in Figure 9.9 represents a

FIFO of capacity two.

Pluw 9 U.S A FIF0

Figure 9.10 depicts the "equivalentm program obtained by a direct translation.

I.

1 I

Instruction Cell Modifications - 231 - Section 9.3.6

Figure 9.10 Cell representation of a FIFO

The behavior of the translated program is nondeterminate in contrast to that of the schema.

The reason is that the order of the packets arriving at)% is not guaranteed to be preserved

at C. Moreover, the translated program may deadlock in contrast to the original schema.

The point we try to make Is that the primitives of the data flow processor allow

representation of a richer class of computational behaviors than data flow schemata. The

modifications suggested earlier increase the above difference and allow better

performance.

9.4 The Pipeline Scheme

In the one at a time scheme discussed earlier, an activation of an instance of an

event handler has to wait for the termination of the execution of the previous Instance of

that event handler. This section shows that there is no need to wait and the execution of

several Instances of the same event handler can proceed concurrently In pipeline mode. In

order to understand why this can be done consider a data flow schema S satisfying the

following condition:

P1. S Is a single Input acyclic data flow schema which does not contain

nondeterminate actors, conditional actors, or procedure activations.

For each activation of S all actors of S fire, and each actor fires exactly once. The firing

rules for a data flow schema are such that if several activations of S are executed

concurrently, then tokens belonging to different activations do not interact with each other.

L --

.. ...I., .. . I ' liI ' r

Section 9.4 - 282 - The Pipeline Scheme

Furthermore, If token tj precedes token tlk at the Input of S, then for each actor A, having n

output arcs In S the output token n-tuple corresponding to tj Ti(tj) precedes the output

token n-tuple corresponding to tk Ti(tk) In the sequence of token n-tuples output by AI; i.e,

the tokens order is preserved throughout the whole computation.

Condition P1 can be relaxed by allowing conditional actors (such as a switch

actor [We-79]) as long as the schema is a well formed acyclic data flow schema (as

defined for example In [De-73]). In this relaxed case, not all actors of S must fire for each

activation of S. Tokens belonging to different activations of S do not Interact with each

other because the schema Is well formed and acyclic. If token tj precedes token tk at the

input of S, then for each actor A, in S if Ti(tj) and Ti(tk) exist then Ti(t j) precedes Ti(tk) In

the sequence of token tuples output by Ai. Note that in this case, If Ti(tj) exists then Ti(tj)

Is a k-tuple for some OMkin; for a switch actor n=2 and kul. We shall not pursue the use of

conditional actors any further since our event handler scripts contain no conditional

elements.

Condition PI can be extended to cover the case of a schema with more than one

Input:

P2. S is an n Input acyclic data flow schema which does not contain nondeterminate

actors, conditional actors, or procedure activations.

S is activated for logically related token n-tuples. Let tij denote the token at Input I (I iSn)

of S belonging to token n-tuple J. In order to use a general schema S satisfying condition

P2 In pipeline mode the following condition must be satisfied:

P3. t% precedes tik In the sequence of tokens Input by S at input I, hImples tmj

precedes tmk In the sequence of tokens Input by S at Input m for all possible i, J,

1*-

, w - -. - -

The Pipeline Scheme - 283 - Section 9.4

k, a.

If condition P3 is not satisfied, undesired Interactions among tokens belonging to different

logical Input token n-tuples may occur.

Condition P3 may be difficult to achieve; for example, when different

asynchronous processes concurrently activate S. Our solution to this synchronization

problem is to transform the schema S having n1 Inputs to a schema S' having one input by

passing a pointer to a contiguous block containing the n original Inputs. This approach was

used earlier in the merge problem. if however, condition P3 can be guaranteed, the

conversion to S' is not needed. The advantages of using S over S' are that S contains

fewer actors (less space) and is executed faster. Faster execution is achieved since

packaging of the inputs into a block and extracting them from the block are not needed; and

execution of S can start before all n inputs are available. One case in which condition P3

can be easily achieved is when a single process creates the inputs of S.

An EBL script can be represented as a data flow schema whose Inputs are

pointers to n event objects forming an event collection. From the syntax of an EBL script it

can be seen that condition P2 is satisfied for every script. Condition P3 is also satisfied

since a single process (the relevant EHM) activates Instances of the script. Thus, several

Instances of an event handier can be executed concurrently In a pipeline mode.

Note that before a schema S In translated for the data flow processor it shouldI.I
be transformed to a safe schema, as described in [MI-76], In order to avoid congestion

deadlocks. Such a transformation is not needed for event handler scripts In the one at a

time scheme. When the pipeline scheme Is used, this transformation is required and can be

Section 9.4 - 234 - The Pipeline Scheme

done by the compiler. All known results about pipeline techniques can be applied to our

scheme. For example, in order to Increase the throughput of an event handler (the number

of Instances activated per unit time), Identity actors can be introduced In some branches of

the schema; this however, Increases the number of packets sent per execution of an

Instance of an event handler.

9.5 The Multiple Script Copies Schemes

In the two schemes described in the previous sections exactly one copy of a

script of an event handler was stored In the data flow processor. Each of these schemes

can be modified by having n1 copies of a script; n is fixed for each event handler. By

extending the one at a time scheme, we get a scheme in which at most n Instances of an

event handler can be concurrently active, the n at a time scheme. By extending the pipeline

scheme, we get a scheme in which at most n pipelines can be concurrently active, the n

pipelines scheme. In both schemes, the EHM can start activating a new Instance of the

event handler when there is a free script copy. In the n at a time scheme, a script copy

becomes free once Its execution has terminated (all actors have fired). In the n pipelines

scheme, a script copy becomes free after a signal has arrived from each of Its input actors

(or in another approach from at least one of its input actors) to the EHM.

For both schemes, In the simplest approach the EHM uses the script copies on a

round robin basis; the next script copy to be used is always known, and Is used only after it

becomes free. This approach may cause unnecessary delays since script copies may not

become free In the order In which they are used. In an Improved scheme, the EHM maintains

a list of free script copies; the least recently used free script copy is selected by the EHM.

,-

The Multiple Script Copies Schenes - 236 - section 9.5

The fact that the script copies are fixed Implies that each ECM can use the

fixed sources solution to the merge problem. In particular, this means that the request

network need not be added to the processor and the architecture of Figure 9.2 can be

used.

A compiler cannot make an Intelligent selection of n for each event handler just

by analyzing a program. In general, such a selection requires understanding of the program

and knowledge of the values of run time parameters or ranges of such values. Therefore, a

reasonable approach Is to let the user specify n for each event handler. The specification

can be done within the program text Itself or by some compile time dialog. By allowing the

user to arbitrarily select n, even the smallest program may need unbounded space for

storing Its code (the script copies). Unless virtual memory is added to the processor, It may

be necessary to eliminate script copies at load time in order to meet the current available

space in the instruction memory. Again, some load time C-ialog can be imagined in which the

user Incrementally decreases n for various event handlers until the complete program can

be loaded.

9.6 The Virtual Memory Fixed Schemes

All schemes presented so far Implicitly assume that the Instruction memory can

contain all managers and all script copies together. The assumption may not be valid for

large programs, for programs where many copies of scripts are desired In order to obtain

I. higher concurrency, for processors containing a small Instruction memory, or when more than

one of these cases occur. A natural solution to the problem of a too small Instruction

memory In such cases is to use a sufficiently large virtual memory. The virtual memory can

. . .. 1i m mn

Section 0.6 - 286 - The Virtual Memory Fixed Schemee

be implemented as a hierarchy of memories; for example, as a two level memory. The

instruction memory serves as the cache, and some packet memory serves as the second

storage level. This modification of the data flow processor allows a our previous schemes

to be used without any change, assuming that the cache mechanism is transparent to the

program; the number of script copies and their virtual addresses are fixed, hence the name

of the schemes outlined In this section.

Virtual memories and cache mechanisms are described In [MI-77] and [We-7T] as

parts of their schemes for adding procedures to the data flow processor, and In [Ac-77];

similar mechanisms can be used In our case. Only the virtual memory and cache mechanism

of (Mi-77] or [We-79] are needed; and not the additional mechanism supporting procedure

calls such as: unique Identifiers, or special function units for handling procedure calls.

The existence of a virtual memory allows one to use a big number of script copies

in the multiple script copies schemes In order to Increase concurrency. However, using too

many copies of the same script may cause unnecessary trashing. If the replacement

algorithm used by the cache mechanism is known to the compiler, an EHM can select the

next free script copy In a way which minimizes the likelihood of a cache miss. Suppose for

example that the least recently used (LRU) replacement algorithm Is used. Selecting for the

next free copy to be used the least recently used free script copy as suggested in the

previous section Is the worst approach when trashing occurs; although It Is the best

approach for trying to keep all n copies of a script In the cache. Selecting the most

recently used free script oopy is a better approach for reducing trashing. Generalizing from

this (LRU algortthm) example, it seems that the criterion used by an EHM for selecting the

next free script copy should be the Inverse of the criterion used by the replacement

1

' -= "I " i Ili l iI I , - - , , ,I

The Virtual Memory Fixed Schemes - 237 - Section 9.6

algorithm.

9.7 The Script Copying Schemes

We stated earlier that solutions to the procedure problem can be used in the

implementation of EBL. The main characteristics of the two currently existing proposals for

solving the problem [MI-77, We-79] have been described. This section demonstrates how

Miranker's scheme ([Mi-77]) can be used. The idea is quite simple: we view the script of an

event handler as a procedure P, and the activation of an instance of the event handler as a

call to procedure P. Miranker's scheme cannot be employed in every case since unsafe

conditions may occur [MI-77]. Thus, we first have to demonstrate that the use of the

scheme In the context of our implementation is safe.

At some level of abstraction an EHM can be viewed as a loop containing a call to

procedure P. A potential source for unsafety in such activation is that several concurrent

Instances of P may return result to the same destination. This cannot occur In our

Implementation since P returns no values to the calling EHM. According to Miranker, a

sufficient condition to ensure correct and safe operation of his scheme In this case Is that

all input values for a given activation of a procedure arrive before any of the Input values

for the next activation [Mi-77]. Since all activations of P occur within the EHM, the above

condition can be easily guaranteed.

The special properties of our event handlers can be used to simplify Miranker's

scheme. In his scheme, a special actor RET Is used to support returning of a value from a

procedure to Its caller. Since no values are returned in our case, this actor is not needed.

A special actor FREE Is activated at the end of the execution of an Instance of a procedure

Section 9.7 - 236 - The Script C43PYIN Schemes

with which a suffix r has been associated. its tasks are purghg eI inretrction memory cells

having suffix v, destroying all packets with a name with suffix r, and returning r to the list

of free unique identifiers (suffixes). In our case, every actor of the procedure fires exactly

once; therefore, each procedure cell can be purged Immediately when it fires. This approach

is reminiscent of Incremental garbage collection. in our case, this incremental garbage

collection Is simpler than the garbage collection needed in Miranker's scheme and provides

better space utilization. Returning e to the list of free unique Identifiers can be done at the

end of the execution of the Instance of the procedure as in EMI-77].

Another simplification, also based on the fact that each actor In our procedures

fires exactly once, can be made. There Is no need to convert a procedure body to a safe

schema as described in [MI-75] in order to prevent congestion deadlocks. This simplification

results In better space utilization and smaller communication overhead.

An Interesting observation is that In Miranker's scheme If a suffix a Is imited to n

bits then at most Nz2n procedure calls can be executed concurrently. This limitation not

only restricts the degree of concurrency but also the computations which can be performed

on the processor. For example, factorial(N+1) cannot be computed by the cmnventional

recursive program. Using Miranker's technique in our scheme does not restrict the possible

computations. When recursive procedures are expressed In EOL, the state of the

computation at each Instance of a procedure is kept in one or more event objects and these

have nothing to do with suffixes.

The schemes of [MI-77] and [We-79] incrementally copy itstruction

constituting the procedure body as they are needed. Another strategy is to copy the whole

,

The Script Copying Schemes - 28 - Section 9.7

procedure body at call time. The time space tradeoffs of the two approaches have been

discussed in [We-79] and wifl not be repeated here. In our case, there Is additional

argument In favor of the latter approach: the fact that all actors of the procedure fire and

no Instructions are fetched In vain (as happens when the procedure contains conditional

actors). Copying a whole procedure Is simple. In the case of [Mi-77] It can be easily

achieved if a procedure occupies a contiguous area in the virtual memory; the compiler can

guarantee such a memory allocation.

The Idea of copying a whole procedure body can be pursued to further specialize

the schemes of [MI-77] or [We-79] to our needs. Since In our case each procedure has

exactly one caNer (the EHM), this caller can explicitly initiate the copying mechanism.

Furthermore, each EHM can pre-copy several instances of a script and select one of these

ready script copies when needed. This approach can improve the time performance unless

too much thrashing occurs.

All the schemes described in this chapter (except in this section) did not require

the use of the request network. However, in order to use the schemes of [MI-77] or

[We-79] the request network is needed since the sources generating requests to an ECM

are varying. Condition RI of section 9.3.1 is satisfied since each request arriving to an ECM

can be individually processed without the need to send or receive other requests. Thus, all

requests to ECM's can be passed through the request network. As suggested at the end of

section 9.3.1 requests from EHM's to ECM'a can be directed through the distribution

network in order to serve them faster and to decrease congestion In the request network;

this can be done since the EHM's are fixed sources.

.... I I

Section 9.8 - 240 - The Memory System

9.8 The Memory System

The architecture of the memory system depicted in Figure 9.2 has been briefly

described earlier. It closely resembles the structure memory described In [Ac-77] and our

memory system is an adaptation of the structure memory. The structure memory as

described in [Ac-77] does not support side effects; In fact, avoiding side effects is one of

Its prime goals. For example, If two pointers P1 P 2 In the processor point to the same

-,, structure S, and one of these pointers P1 is involved In an operation which modifies a

component of the pointed structure the structure pointed to by P2 is not affected by the

operation. Conceptually, the operation creates a new structure although in the

Implementation parts of the two structures are physically shared.

If in the previous example one wants that P2 will reflect the operation performed

on the structure S; I.e., will point to the modified structure, it cannot be achieved. Thus, the

structure memory is not adequate for handling global structures. The main use of the memory

system In our implementation scheme is for storing event lists. An event list is maintained by

one process, the ECM, but various pointers to its elements may exist in the processor, in

EHM's. There Is no sense in copying parts of an event list as a consequence of a change in

the list, such as deletion of an element, (as will happen if the structure memory is used)

since an event list is global.

The reason for eliminating side effects from the structure memory is avoiding

nondeterminacy In computations using it, as explained In [Ac-77]. In our implementation

schemes the memory Is used by managers and Instances of event handlers In ways which do

not cause nondeterminacy in addition to the nondeterminacy of the algorithms themselves;

.. . | ll r -. -

The Memory System - 241 - 3scon 9.8

the algorithms owneWater cy is Implied by the semantics of the language.

9.8.1 Storage OrgdmzaUom

The memory system handles free storage internally. The smallest storage

allocation unit Is a cell. A cell is a contiguous group of n memory words where n Is some

fixed (small) number. Whenever a storage area is needed, an operation packet Is sent to

one of the memory controllers requesting k>1 cells. The memory controller handling the

request creates a blocA of k ceils by linking k cells it obtains from the free cell network in

one of several fixed representations. These representations may include for example a

linked list, or a tree of some fixed branching factor. A block in any such representation has

a unique cell, called the blocA head, associated with it; the block head contains identifying

Information about the block and its use (e.g., as a Nst element). Once a block Is formed, ts

words are addressed as if It Is a contiguous storage area by specifying the block head

address and an offset; the memory controller traces the cells constituting the block In order

to access the desired word. The representation of memory blocks is selected by the

compiler. For example, big event objects can be represented as trees whereas smell ones

as linked lists.

Handling the free storage can be done as described in [Ac-77]. Each memory

controller has a free cell list associated with it (initially the whole memory space Is divided

among the controllers). Each memory controller always presents a free col from Its free cel
|.

list to the free cell networA (unless its list is empty). Whenever it needs a cell It takes it

from the free cell network. This network can be viewed as an arbitration network which

passes free coil addresses from memory controllers to memory controllers. Whenever a

" ,V

Section 9.8.1 - 242 - Storage Organization

memory controller decides to return a cell to the free storage It returns it to its private free

cell list; thus, there Is no need for any coordination among different memory controllers

accessing free cell lists. In contrast to [Ac-77] where cells are returned to free storage on

the basis of reference counts, In our case blocks are explicitly returned to free storage as

described In chapter 7.

9.8.2 The Memory Controller

The main properties of the memory controller have been already described. We

view it as a programmable processor which can be tailored exactly to the needs of our

Implementation schemes. The operation packets it understands include conventional

Instructions such as: write, read, read n words, or read-modify-write; instructions

concerning free storage such as: allocate, or return; Instructions supporting our

representation of list elements described in chapter 7 such as increment a reference count;

and Instructions supporting requests that an ECM is asked to handle such as: insert,

not-needed, book, cancel, acquire, or next, as defined in chapter 1.

Note that in order for a read-modify-write operation (e.g., test and set) to

achieve the desired effect it should be executed as a nondivisible command by a memory

module, and not Just by a memory controller; otherwise, Interleaving of command packets

issued by several memory controllers may occur. Thus, we assume that a memory module can

execute read-modify-write commands In addition to read or write commands.

The memory modules constitute a shared memory accessible to managers and to

instances of event handlers. Thus, some of the operations on an event list which In our

virtual system Implementation scheme (described In chapter 7) are executed by ECM's can

1

The Memory Controiler - 243 - Section 9.8.2

be executed directly by Instances of event handlers; for example, read or not-needed. This

decreases the number of packets per execution of an instance of an event handler.

When a memory controller receives a not-needed operation packet (Indicating

that a list element is no longer needed by the Instance of the event handler) It can always

return to free storage all the cells constituting the corresponding memory block except the

block head (which contains Information about the state of the list element and pointers to

its neighbors). After doing so it can check whether the block head itself can be also

returned to free storage according to the state of the element, using some nondivislble test

and set instruction as described in chapter 7. Thus, storage associated with a list element

can be partially freed even when it Is still in the acquired state and before it enters the

deleted state.

9.8.3 Congestion Deadlocks Due to the Memory System

The problem of congestion deadloks arose In several places In this chapter. The

solution employed was converting a schema to a safe schema by using signal tokens. The

same problem may arise due to unsafe use of the memory system. The solution to this

problem is identical to the solution of the first problem. Each access to the memory should

be viewed as if done by a memory actor; the subschema containing this actor must be safe.

From another point of view, room must be prepared for all possible results of a memory

operation packet. The memory system does not spontaneously send packets destined to the

Instruction memory; thus, preparing room for the results Is sufficient for preventing

deadlocks due to congestion@ in the networks passing packets from the memory system to

the instruction memory (the distribution network, and the control network in Figure 9.2).

Section 9.8.3 - 244 - Congestion Deadlocks Due to the Memory System

An important question is: can deadlocks occur due to congestion of packets

destined to the memory system in the arbitration network? in order to answer the question,

first observe that an operation packet destined to the memory system does not specify a

specific memory controller as its destination. Thus, such a packet is blocked only if all

memory controllers are currently full (i.e., cannot accept new operation packets). Such a

situation does not imply that a deadlock has occured since a memory controller can accept

new operation packets after completing the processing of a previous one (It can process

several packets concurrently). The only case in which a deadlock can arise is when no

operation packet currently waiting In the memory controllers can be completely processed.

This means that each operation packet either waits because a booked list element is

encountered (in case of the packets next or book), or because no more free storage cells

are available. In this situation the packets needed to allow completion of the operation

packets currently waiting in memory controllers (cancel, acquire, or not-needed) cannot

enter the memory system and a deadlock exists.

Our solution to the deadlock problem consists of the following algorithm executed

by a memory controller when its input queue is full.

1. Move some of the currently waiting operation packets to a special buffer within

the memory controller. If there is no room in the special buffer then goto step 2,

else terminate.

2. Move some of the currently waiting operation packets to the memory Itself after

obtaining memory cells from the free cell network. If not enough free cells are

available then goto step 3, else terminate.

3. Send some of the currently waiting operation packets back to the Instruction

I'

Congestion Deadlocks Due to the Memory System - 246 - Section 9.8.3

memory; these packets will arrive again later.

Step 3 causes the waiting packets to circulate in the system, thus allowing new operation

packets to enter the memory system. It causes communication overhead and this is the

reason why it is used as the last resort by a memory controller.

9.9 Performance Evaluation

Appendix C develops bounds on the performance of a certain class of EBL

programs on the data flow processor. As in the case of a processor network the throughput

of a program is used as a performance measure. The analysis assumes that the arbitration

network and the distribution network consist of several routing networks. Objects

propagate in the system subject to constraints on routing network capacity and operator

capacity. As in the case of a processor network a linear programming problem whose

solution yields the maximum possible throughput is defined. The analysis is done first

without assuming a specific implementation scheme, and then taking into account our

manager based Implementation scheme.

9.10 Summary

Several schemes for implementation of EBL on a data flow processor have been

developed in this chapter. Each of these schemes requires a memory system in addition to

the instruction memory. The memory system handles free storage internally from efficiency

reasons; free storage could be managed outside the memory system. Most of our schemesI.
do not require additional mechanisms (except the memory system). Some of the schemes,

the script copying schemes, require additional supporting mechanisms: the request network,

and the mechanisms required by the underlying procedure implementation scheme.

Section 9.10 - 246 - Summary

Procedures recursion and semaphore operations can be easily expressed In EBL.

Therefore, our implementation schemes actually add these capabilities to the processor.

The data flow implementation schemes outlined In this chapter can be adapted to directly

solve specific problems in the data flow processor. For example, in order to incorporate

procedures In some data flow processor language, procedure managers can be created. A

procedure manager can be viewed as a combination of an event handles, manager and an

event class manager. The event list maintained by the procedure manager can simply

contain requests for procedure activations.

I.

S '1

II

Conclusions and Directions for Further Research - 247 - Section 10

10. Conclusions and Directions for Further Researnh

This chapter summarizes the research, presents the conclusions, and suggests

directions for further research.

10.1 &umary and Conclusions

The purpose of this research has been the development of a language for parallel

programming in a distributed system environment, and the investigation of strategies for its

implementation on multiple processor systems. Several aite, natives for the underlying

computational model have been considered. This dissertation has analyzed some of the

similarities and the fundamental differences between our model, on one hand, and message

passing models and process based models, on the other hand; and motivated the selection

of event semantics as the underlying model.

The fundamental characteristic of our event model is the ability of an instance of

a program unit (an instance of an event handier) to unilaterally broadcast messages (cause

events) without specifying their targets. The receivers (evert handlers) autonomously

decide whether they are Interested in the messages (the information about the nature of

the occurrence of the events) or not. A receiver is capable of performing a powerful

operation: it can remove from the ether, which encloses all program units, one or more

messages in an atomic action. Each instance of an event handler only causes several

events, each of which activating possibly several Instances of event handlers (I.e., creating

new activities) which cause new events; this is the way by which the computation proceeds

In our model.

I,

." . . ." - - 111111 I I - II . . -..4.-. I 1 l i

Section 10.1 - 248 - Summary and Conclusions

EBL Is a nonprocedura language. As for every nonprocedural language, the

implementation is required to select an algorithm to perform the operations indirectly

specified by the program. Such an Implementation may be Inefficient especially if the

language contains too powerful constructs. Therefore, the main objective of this research

has been to devise a language which Is general enough to allow expressing a wide variety

of computations, but is restricted enough to enable efficient Implementations. During the

course of this research many constructs and features have been considered as candidates

to be included in the language. In some cases constructs have been rejected since they

are Inherently difficult to Implement or Imply Inefficient Implementation (inefficient run time

code). In other cases constructs have not been Incorporated In the language simply due to

our desire to concentrate In this research on the Investigation of the fundamental

characteristics of event semantics.

We have not tried to achieve a minimal language since we did not want to obtain

a language which is difficult to use. Thus, the effects contributed by some of the language

constructs can also be achieved via others. For example, tags are redundant since their

effect can be achieved by a single global counter implemented as a single use recurrent

event class Identifier. However, this alternative unnecessarily serializes the process of

getting new tags and complicates programs.

Each construct or type in the language has an Importseat role which justifies its

existence. single-use recurrent events are the work horse of the- language. They allow

modeling of all conventional language constructs discussed In chapter 6. singleuse

non-recurrent events are useful In certain real time applications (e.g., for modeling an

elevator push button), for representing sets which can grow and shrink, or for controlling

'I'

Summary and Conclusions - 249 - Section 10.1

mutual exclusion, multiuse recurrent events allow broadcasting a message to several

receivers as well as modeling mutable database records (together with the last predicate).

multi use non recurrent events allow computing functions by tables and modeling sets

which cannot 3hrink. Tags provide for distinguishing between the effects of different

instances of the same event handlers as well as joining several events belonging to the

same logical computation. The predicates allow one to explicitly coaitrol the order in which

Instances of an event handler are activated. Modules have no dynamic effects; they

contribute to the modularity of the language as discussed in chapter 3.

The contribution of our single-use P jents to the expressive power of the

language Is significant. In fact, they allowed us not to include in the language conventional

constructs such as: variables, assignment statements, iteration constructs, procedures,

functions, and semaphores. These constructs can be easily modeled in the language. In

addition, events allow activation of parallel processes, synchronization of parallel

processes, mutual exclusion, message passing, Immutable objects, and the effect of mutable

objects.

Even though mutable objects are not part of the language, their effect can be

achieved In several unique ways. One way is to delete temporary objects (forget

singleuse events) belonging to several classes, and to create new objects (cause new

events) from these classes. Another way Is to create permanent objects (cause multi use

I. events) in certain classes, and to read the latest object from a class (using EBL's

predicates).

I.I

Section 10.1 - 260 - Summary and Concluulmw

The language design goals given In chapter 1 have been achieved: EBL Is simple

and Its few constructs are quite primitive; nevertheless, it manifests many desired

properties. Its expressive power Is high as discussed in chapters 6 and 6. Modularity

exists In the language in several forms as shown in chapter 3. Encapsulated program units

and abstract data types can be created. Programs can be developed both in a top down

design and In a bottom up manner. Parallelism In an EBL program is manifested In several

levels as described In chapter 3. New activities can be easily spawned in a high rate,

synchronized, and joined. These properties make EBL well suited as a language for parallel

programming In a multiple processor system. The language does not contain constructs

which are inherently difficult to implement or Imply Inefficient Implementation.

The Implementation schemes developed in this dissertation are uncommon in

implementations of programming languages. The basic Implementation scheme Is especially

designed for distributed systems; it involves many managers communicating with each other

and operating without any centralized control. Unlike Implementations Involving one global

manager the role of a manager In our scheme Is limited; It can be either an event class

manager or an event handler manager.

This thesis is yet another example of the fact that more difficulties are

encountered in distributed system Implementations than In the case of single processor

system Implementations; this Is the price paid for achieving higher concurrency (as well as

other advantages). An example of an operation that is more difficult to implement in aI.
distributed system is locking of objects. We have developed a two phase locking

(acquisition) algorithm in which deadlocks are prevented. In contrast to many existing

algorithms which prevent deadlocks by defining a total order on all objects to be locked, our

Summary and Conclusions -261- 8etim 10.1

scheme only defines a partial order on all object classes. The advantage of this scheme is

that objects can be locked by a requestor concurrently and not sequentially as In other

algorithms.

The investigation of schemes for implementation of EBL on a processor network

has led to several optimization problems involving distribution of objects In a network. These

problems are of general Interest and are not restricted to the context of EBL. We have

proved that the optimization problems and even approximations to these optimization. are

NP-hard, and suggested heuristic algorithms.

Various schemes for Implementation of EBL on a data flow processor have been

sugested. The existence of these schemes in addition to the network Implementation

schemes shows that the scope of the language is not restricted to a specific computer

architecture, and that the language does not need special hardware to support Its

/

Implementation. An implementation of EBL on a data flow processor actually adds to the

processor certain capabilities which have been research subjects In the last several years

(e.g., procedures and semaphores), since these can be easily expressed In the language.

One should note that implementations of the language (in particular our manager

based Implementation scheme) on geographically distributed systems are likely to be

Inefficient because of the delays which are Inherent in such systems.

The language seems to be useful for applications Involving, for example,

application of resources (as can be seen from chapter 6). However, application of the

lnguage to specific domains can benefit from special constructs. For example, real time

aplications could make use of constructs which allow one to specify time constraints suchr * - -

Section 10.1 - 262 - Smmary and Conclusions

as the maximum latency between events. However, schemes which guarantee these

constraints must be devised.

10.2 Directions for Further Research

This research can be pursued both at the language level and at the

implementation level. The language described in this thesis contains only a small set of

constructs. These constructs allow one to model quite easily many other constructs but it is

not realistic to assume that a programmer would like to explicitly translate such constructs

each time they are used. In order to make the language more practical It should be

supplemented by additional constructs. The approach of chapter 5 can be pursued, or the

event semantics might be Incorporated In some existing language.

A natural future step Is an Implementation of the language on some multiple

processor system, e.g., the MuNet [Wa-78b]. Once the language is Implemented Its

usability can be determined. Various measurements can then be performed to determine

the overhead Introduced by our managers and the efficiency of the manager based

implementation scheme. Another way to evaluate the Implementation scheme is by means of

a simulation. Another research direction is to design a multiple processor architecture which

directly supports the language.

There are Issues which have not been addressed In the thesis end one may want

to Investigate how they affect the results of this research. Examples of such isses are:

reliability of the underlying system, and concurrent execution of several programs on the

same system.

1.

Directions for Further Research - 2583 - Section 10.2

Will multiple processors speak EBL? Many arguments favoring a positive answer

have been given In this dissertation. However, the development of languages for parallel

programming In a distributed system environment will not, and should not, terminate with this

research. Additional languages, perhaps more attractive, can be expected.

a.

1.1

Section 11 _ 264 - References

11. References

[Ac-77] Ackerman, W. B., A Structure Memory for Data Flow Computers, MIT/LCS TR-186,

Aug. 1977.

[Ah-77] Aho, A. V. and Uliman, J. D., Principles of Compiler Design, Addison-Wesley Pub.

Co., Reading Mass., 1977.

[Ba-75] Bayer, R., On the Integrity of Data Bases and Resource Locking, Lecture Notes In

Computer Science 39, Proc. 5th Int. Symp., Sep. 1976.

[BH-74] Brinch Hansen, P., A Programming Methodology for Operating System Design,

Information Processing 74, North-Holland Pub. Co., Amsterdam, 1974, 394-397.

[BH-75] Brinch Hansen, P., The Programming Language Concurrent Pascal, IEEE

Transactions on Software Engineering, Vol. SE-1, no. 2, June 1975, 199-207.

[Ch-74a] Chamberlin, 0. D. and Boyce, R. F., SEQUEL: A Structured English Query Language,

Proc. 1974 ACM SIGMOD Workshop on Data Description, Access and Control,

1074.

[Ch-74b] Chamberlin, D. D. et al., A Deadlock-Free Scheme for Resource Locking In a

Data-Base Environment, Information Processing 74, North-Holland Pub. Co.,

Amsterdam, 1974, 340-343.

[Co-71] Courtois, P. J. et al., Concurrent Control with Readers and Writers, Comm. ACM

14, 10, Oct. 1971, 887-658.

[De-73] Dennis, J. B. and Fossen, J. B., Introduction to Data Flow Schemas, MIT/MAC

Computation Structures Group Memo 81-1, Sep. 1973.

.b ([De-75] Dennis, J. B. and Misunas, D. P., A Preliminary Architecture for a Basic Data-Flow

Processor, 2nd IEEE Symp. on Comp. Arch., N.Y., Jan. 1976, 126-132.

References - 256 - Section 11

[De-77] Dennis, J. B. et al., A Highly Parallel Processor Using a Data Flow Machine

Language, MJT/LCS Computation Structures Group Memo 134, Jan. 1977.

[Di-O8a] Dijkstra, E. W., Co-operating Sequential Processes, In Programming Languages,

Ed. F. Genues, Academic Press, New York, 1968.

[Di-68b] Dijkstra, E. W., The Structure of the "THE M Multiprogramming System, Comm. ACM

11, 5, May 1968, 341-346.

[01-71] Dijkstra, E. W., Hierarchical Ordering of Sequential Processes, Acta Informatica 1,

1971, 115-138.

[DI-72] Dijkstra, E. W., Notes on Structured Programming, In Structured Programming,

Academic Press, New York, 1972, 1-82.

[Ga-79] Garey, M. R. and Johnson, D. S., Computers and Intractability, A Guide to the

Theory of NP-Completeness, W. H. Freeman and Co., San Francisco, 1979.

[Gr-75] Grief, I., Semantics of Communicating Parallel Processes, MU/MAC TR-154, 1975.

[Gr-78] Gray, J., Notes on Data Base Operating Systems, IBM Research Laboratory, San

Jose Ca., RJ 2188, Feb. 1978.

[Ha-78] Halstead, R. H., Multiple-Processor Implementations Of Message-Passing Systems,

MIT/LCS TR- 198, Jan. 1978.

[Ha-79] Halstead, R. H., Reference Tree Networks: Virtual Machine and Implementation,

MIff/LCS TR-222, July 1979.

[He-69] Hewitt, C., PLANNER: A Language for Manipulating Models and Proving Theorems in

a Robot, IJCAI-69, Washington, D. C., May 1969.

[He-73] Heart, F. E. et al., A New Minicomputer/Multiprocesso- for the ARPA Network,

AFIPS Conference Proc., Vol. 42, June 1973, 529-637.

[He-76] Hewitt, C., Viewing Control Structures as Patterns of Passing Messages, MUT/Al

I"'

-

Section 11 - 256 - References

Working Paper 92, Aug. 1976.

[He-77] Hewitt, C. and Baker, H., Laws for Communicating Parallel Processes, MIT/AI

Working Paper 134, 1977.

[He-79] Hewitt, C. et al., Specifying and Proving Properties of Guardians for Distributed

Systems, Proceedings of the International Symposium on Semantics of Concurrent

Computation, Evian France (in Lecture Notes In Computer Science 70,

Springer-Verlag New York), July 1979.

[Ho-74] Hoare, C. A. R., Monitors: An Operating System Structuring Concept, Comm. ACM

17, 10, Oct. 1974, 549-667.

[Ho-78a] Hoare, C. A. R., Communicating Sequential Processes, Comm. ACM 21, 8, Aug.

1978, 668-677.

[Ho-78b] Horowitz, E. and Sahni, S., Fundamentals of Computer Ngorithms, Computer

Science Press. Inc., Maryland, 1978.

[Je-77] Jenny, C. J., Process Partitioning In Distributed Systems, IBM Zurich Research

laboratory RZ 873, April 1977.

[Kn-75] Knuth, D. E., The Art of Computer Programming Vol. 1, Addison-Wesley Pub. Co.,

Reading Mass., Feb. 1975.

[Ko-76] Koffler, R. P., An Event Based Automobile Oriented High Level Programming

Language, S.. Thesis, Department of Electrical Engineering and Computer

Science, MiT, Aug. 1976.

[Ko-79] Kornfeld, W. A., Using Parallel Processing for Problem Solving, S.M. Thesis,

Department of Electrical Engineering and Computer Science, MIT, May 1979. (A

short version was published in IJCAI-79, Tokyo, Aug. 1979, 490-492.)

[La-78] Lamport, L., Time, Clocks, and the Ordering of Events in a Distributed System,
1

tA

References - 267 - Section 11

Comm. ACM 21. 7, July 1978, 558-656.

(1.-iS] L-e339r, V. R. et al., Organization of the Hearsay 11 Speech Understanding System,

IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-23, no.

1, Feb. 1975, 11-24.

[Le-79] Leung, C. K. C., ADL: An Architecture Description Language for Packet

Communication Systems, MIT/LCS Computation Structures Group Memo 785, Oct. '
1979.

[Mi-75] Misunas, D. P., Deadlock Avoidance in a Data-Flow Architecture, MIT/MAC

Computation Structures Group Memo 116, Feb. 1975.

[MI-771 Miranker, G. S., Implementation Schemes for Data Flow Procedures, MIT/LCS

Computation Structures Group Memo 138-1, Feb. 1977.

[Mo-is] Modell, H. S. et al., Coordination of Parallel Processes in PL1, Proc. of the 1978

International Conference on Parallel Processing, Aug. 1976, 247-253.

[Mo-77] Morgan, H. L. and Levin, K. D., Optimal Program and Data Locations In Computer

Networks, Comm. ACM 20, 5, May 1977, 3 15-322.

[Na-63] Naur, P. et al., Revised Report on the Algorithmic Language ALGOL 60, Comm. ACM

8 (1), 1963, 1-17.

[Pa-il] Patti, S. S., Limitations and Capabilities of Dijkstra's Semaphore Primitives for

Coordination Among Processes, VIT/MAC Computation Structures Group Memo 57,

Feb. 1971.

[Pe-7i] Peterson, J. L., Petri Nets, ACM Computing Surveys 9, 3, Sep. 1977, 223-252.

I.[Pf-74] Pfister, G. F., The Computer Control of Changing Pictures, MIT/MAC TR-135, Sep.

1974.

h[Pn-79] Pnueti, A., The Temporal Semantics of Concurrent Programns, Proceedings of the

Section 11 - 268- Ref erences

international Symposium on Semantics of Concurrenlt Computation, Evian France

(in Lecture Notes In Computer Science 70, Spriger-Verleg Now York), July

1979, 1-20.

ERe-77a] Reed, D. P. and IKanodla, R. K., Synchronization with Eventcounts and Sequencers,

M/ILCS Computer System Research Division RFC 138, Mar. 1977. (Also

published In Comm. ACM 22, 2, Feb. 1979, 115-123.)

[Re-77b] Reingold, E. M. et al., Combinatorial Algorithms: Theory and Practice, Prentice-Hall,

Inc., 1977.

[Re-78] Reed, D. P., Naming and Synchronization In a Decentralized Computer System,

MIT/LCS TR-205, Sep. 1978.

LSt-74] Strachey., C. and Wadsworth, C. P., Continuations: A Mathematical Semantics for

Handling Full Jumps, Technical Monograph RPG- 11 Oxford University Computing

Laboratory, Jan. 1974.

[St-78a] Stone, H. S. and Bokharl, S. H., Control of Distributed Processes, Cwarpjtor Vol.

11, No. 7, July 1978, 97-106.

[St-78b] Stucki, M. J. et al., Coordinating Concurrent Access In F- Distributed Database

Architecture, Fourth Workshop on Computer Architecture for Non-Numeric

Processing, SIGARCH Vol. Vii No. 2, Aug. 1978, 80-64.

[Su-77J Sullivan, H. and Ba-shkow, T. R., A Large Scale, Homogeneous, Fully Distributed

Parallel Machine, I and 11, Proc. of The 4th Annual Symposium on COMPUTER

ARCHITECTURE, March 1977, 105-117, 118-124.

(Wa-78aJ Ward, S. A. and Halstead, R. H., A Syntactic Theory of Message Passing, MIT/LCS.

DSSR Internal memorandum, April 1978.

[Wa-78b] Ward, S. A., The MuNet: A Multiprocessor Message-Passing System Architecture,

References - 259 - Section 11

Proc. Seventh Texas Conf. on Computing Systems, Oct. 1978.

[We-79] Weng, K. S., An Abstract Implementation fur a Generalized Data Flow Languvge,

Ph.D Thesis, Department of Electrical Engineering and Computer Science, MT,

May 1979.

[Wi-77a] Winston, P. H., Artificial Intelligence, Addison-Wesley Pub. Co., Reading Mass.,

1977.

[WI-77b] Wirth, N., Modula: a Language for Modular Multiprogramming, Software-Practice

and Experience, Vol. 7, 1977, 3-35.

[Wi-77c] Wirth, N., Towards a Discipline of Real-Time Programming, Proc. of an ACM

Conference on Language Design for Reliable Software, Raleigh, North Carolina,

March 1977, 190-195.

[Wo-77] Wong, K. C. and Edelberg, M., Interval Hierarchies and Their Application to

Predicate Files, ACM Tran. on Database Systems, Vol. 2, No. 3, Sep. 1977,

223-232.

[Wu-72] Wulf, W. A. and Bell, C. G., C.mmp - A multi-mini-processor, Proc. of the 1972 Fall

Joint Computer Conference, Vol. 41, 1972, 766-777.

I.I

I,

Appendix A - 280- The Formal Syntax

Appendx A - The Formal Syntax

This appendix contains a formal definition of the syntax of EBL The order of the

sactions Is close to that of chapter 4 for a convenient reference. The notation Is explained

at the beginning of chapter 4.

A.1 identifers and Numb~ers

(ident) (l= etter> ((letter> I <digit> I-

(unsigned-number> ::- <(digit>),

<character> (digit> I(letter> I (special-character)

(digit> ::=O 0 1 213141516171819

<letter> ::= aI.z I AI..Z

(special-character): +IIIIIItI)(<(II.

A.2 Constants

<constant> ::= (unsigned-constant) + .I-) (unsigned-number>

(unsigned-constant> ::z (unsigned-nunber> '<character> true false

A.3 Types and Type identifiers

(type) ::= (simple_type> I (event type> I (ype_1dent)

(simple-type> :: basic type> I tag

(basic-type> ::* t jbool char

Types and Type Identifiers - 261 -Section A.3

<eveni. type) (single use Jmultiuse)(recurrent Inon-recurrent

event((<ype list>)

(type-lit) -:a <type> (<type>)

<type_Ident> ::=dent>

A.3.1 Type Identifier Definition

(type_definton> O(ype_Ident> ('type ident>) =<type-list)

A.4 Declarations

<declaration> (type definition>

(event-class-declaration>

(tag_declaratlon>

(event-handler>

<module>

A.4.1 Event Class Identifler Declaration

(event-class-decaration> ::= (event-classidentifier>

(event class identi fier>) < event type> < (tpedent>O

(event-classIdentifler) ::z (ident>

A.4.2 Tag Identifier Declaration

(tag declaration) ::= (tag ident> ('tag Ident>) tag;

(tag ident) ::a (Ident>

Section A.5 - 262 - Expressions

A.5 Expressions

(exp> ::= (baaic exp) < non-basic-exp)

(basic exp> ::= (tnt-exp> I (boot-exp> I (char-exp>

A.5.1 Integer Expression

<int-exp> : -.: I -)1 <(mt-term) f <tnt-adop> (tnt-tait>)

<tnt-adop> ::z +]

(mt-term> ::z (tnt-factor> ((mnt mop) (tnt-factor>)

(mnt_.mop> ::z / I div I mod

<(nt-factor> ::= (unsigned-constant> I(formal parameter> <i nt exp>)

abs ((mt_.xp>) ord ((char-exp))

A.5.2 Boolean Expression

(bool-exp> ::t(oot-term> ((boot adop> (boot term>)

(boot-adop> ::or I xor

(boot-term> ::<bool-factor> ((bool-mop> (boot-factor>)

(bool_mop> ::z and

(bool-factor> ::z (not)1 (bool_prmary>

(bool-prmary> ::= (constant> j formal parameter> I (boot-relaton>

((oot exp>)

(Oot relation> ::m (exp> 0 I >),(xp>

(tnt-exp> (I(I>I>)(Int-exp>

Character Expression - 263 - Section A.5.3

A.5.3 Character Expression

<char-exp> (cnstant> j (formal_perameter> chr (<int_exp>)

A.5.4 Non-Basic Express!on

<non basic exp> :: (event class identifier> I (tagident>

<formalparameter>

A.6 Event Handler

<event handler> on <event handlerheading> <eventhandler body> end;

A.6.1 Event Handier Heading

<event handlerheading> ::= <event descriptor list> (where <condition>

<event descriptor list> ::= <event-descriptor> (A <event-descriptor>)

<event-descriptor> ::= (clnssclassidentifier> (<formal_parameter-list>))1

(formal-parameterlisOt> ::= <formalparamotor section>

(,<formal_parametersection>)

(formal_parameter section> ::= <formalparameter> (,<formalparameter>)

<type>

(formaliparameter> :: (ident>

I.

• I. -

Section A.8.2 - 264 - Where Clause Condition

A.6.2 Where Claus. Condition

<condition> ::a (bool-exp>

((<bool-exp>) A <predicate> ~

(predicate> f(A (predicate)

<predicate> exist (<event-classidentifer>)

none (event-classidentfer>)

min ((mIt-exp>)max ((mnt-exp>)

first ((event descriptor))> last < event descriptor))

A.6.3 Event Handler Body

<event-handler-body> ::(tagdeclaration>)

(parcause Iseq cause)~(Script)

(script> ((event> < event>))

(event> ::z (class-designator>

((actualyarameter> (,actualparameter>)))

(class-designator> ::<event-class-ldentmer> I (formalyparameter>

(actual-Parameter> < exp>

A.7 Module

<module> ::= module (module-lntertace> (module-body> end;

(moduleInterface> :: (Import: (ident-list> all)

(export: ((dent-llst> Iall)

(Ident-list> ::= (ident> ('Ident>)

(module body> :z ((<declaration>)

Program - 265- Section A.8

A.8 Program

<program> ::a (module-body)

Appendix B - 266 - Network Performance Evaluation

Appendix B - Network Performance Evaluation

This appendix develops bounds on the performance of a certain class of EBL

programs on a network. It first describes our view of the network and defines the class of

programs captured by our model. Then, a method for computing performance bounds which is

not based on a specific implementation scheme is presented. Finally, a method for computing

performance bounds which takes Into account our manager based implementation scheme is

developed.

B.1 The Model

Our view of the network is basically as described in the beginning of chapter 8;

however, we do not assume that all processors are identical. The links in this model are

directed since we distinguish in the analysis between the flow of objects from node n to

node n' and the flow of objects from node n' to node n. Each undirected link in the original

network is therefore viewed as a pair of directed links in the model. The network imposes

constraints on the rate in which computations can be performed. Our analysis takes into

account two constraints: CPU capacity and link capacity. CPU capacity is derived from the

speed in which the processor can execute instructions. The capacity of a link is derived

from its bandwidth (its speed). Propagation delay along links is not taken into account; we

assume it is negligible.

i.
The network contains a set of Input links Lin through which Information from the

external world arrives, and a set of output links Lout through which Information is sent to

the external world. The Information entering the system through Lin consists of events from

The Model - 267 - Section B.1

d distinguished event class denoted by Sin. The Information leaving the system through Lout

consists of events from another distinguished event class, denoted by eou t . For simplicity

we assume that einleout.

We assume a special class of programs. Instances of event handlers are

activated in response to occurrences of events from the class sin. They perform

computations by activating other instances of event handlers and cause events from the

class eout. All event class Identifiers are of single_use recurrent types. The program uses

events from the class gin and causes (as output) events from the class eout. As a

performance measure of the program we will examine the throughput Z of the program: the

rate In which events from the class Sin are used. Other performance measures are

possible; e.g., the delay between the time an input event arrives and the time all related

output events leave the system. Throughput, however, is easier to analyze and captures an

Important system aspect. Our throughput analysis can be applied to any EBL program

satisfying the following conditions:

1. The program contains two distinct event class identifiers ein and eout as

explained earlier.

2. All event class Identifiers are of single_use recurrent types.

3. No formal parameters of type event appear as class designators in the script of

any event hanadir.

4. For each event class Identifier e, the total frequency In which events from classI.
a are caused by the program or enter the system equals the total frequency in

which events from class a are used by the program or leave the system.

Condition I can be easily relaxed; we shall not do so. Conditions 2 and 3 are relaxed later.

'I-

I,

Section B.1 - 268 - The Model

Condition 4 is needed; otherwise, either the program Is not executed correctly, or events

accumulate In the system without any bound on their number. The following program, for

example, cannot be analyzed In our model:

on Sin

par-cause eout ; e
end ;

The reason Is that over the long term the number of accumulated (unused) events from

class e grows beyond any bound.

B.2 Maximun Possible Throuhut

A method for computing a bound on the maximum possible throughput of a given

program on a given network Is developed now. (The techniques of this section are based on

the analysis in [Ha-79].) Some qualifications on the method are given later. Several copies

of the script of each event handler h exist in nodes of the network. Whenever an Instance

of an event handler is executed, event objects are created according to the script of the

event handler. These event objects propagate through the network links until they are

either used by an Instance of some event handler or leave the system through the output

links (if they belong to eout).

Event objects propagate in the network subject to constraints on link capacity

and CPU capacity. The constraints and the function to be maximized define a lnear

programming problem whose solution yields the maximum possibkL throughput. No higher

throughput is possible since for each execution of an Instance of an event handler only CPU

time for preparing event objects Is taken Into account; no overhead of finding and acquiring

matching event collections exists. Events move In the network in the optimal manner

Maximum Possible Throu - 269 - Seab B.2

(yielding maximum throughput) as if they are guided by some al knowing power which

consumes no computational resources. Table B.1 defines the terminology to be used in the

sequel. Some of the identifiers are only used In later sections.

an event class Identifier
:in (eou t) the Input (output) event class identifier

h an event handler
e^h e appears In the event descriptor list of h
L the set of links in the network
I a link in the network
Lin (Lou t) the set of input (output) links: IinriL (Lout;L)
n, no nodes in the network
1(n) the set of links entering node n
O(n) the set of links leaving node n
Cah the number of events from class e caused by an instance of h

Ush the number of events from class e used by an instance of h
Fe the frequency In which events from class e are caused

Fh the frequency in which instances of h are executed

Fxl the frequency (flow) of messages of class x over link I
Fxn the frequency In which Instances of x are executed on node n

Plan CPU time to execute an instance of h on node n

Rxn CPU time to receive a message of class x on node n

S1NA CPU time to send a message of class x from node n

TAl the time taken by a message of class x traversing ink I

me the ECM of a

Mh the EHM of h

M, ml, m2 managers

Main1 Iff manager m resides on node n, else 0

Classes denoted by x:
a, h, m, mh as defined earlier

Irvn' a message from mh destined to node n' for activating an Instance of h

0^ a message from me to mh (defined only if e'h)

Me e a message from mh to me (defined only If e'h)

MeLout a message from me to the output links

Table 8.1 Network throughput terminology

L

. ..;I

. . .l . . iai •miimia .,,ini im*]iim

Section 8.2 - 270 - Maximum Possble Throu~pu

The difference between the Input flow of messages from class x to node n and

the output flow of messages from class x from node n appears In several equations. The

following function evaluates It:

D(Fxi) xI - Y FxI
1.1(n) 1.0(n)

The linear programming constraints are presented now. Conservation of events must hold

for all a, n:

B.1 D(Fe1) - E UehFhn + E Ceh U 0
h h

Unk capacity cannot be exceeded; thus, for all I:

B.2 1GFG S 1
* The processing performed on node n (communication overhead and execution of Instances of

event handlers) cannot exceed the CPU capacity:

B.3a- RFe + S.nFel -7PhnFhn I
e,hl~n) e*hO(n) h

Only events of class emn can flow on Input links:

6.4 Fe, 0 for all e~ein and 1.11n

Similarly, only events of class sout can flow on output links:

B.6 Fe, 0 for all e~eout and I~u

All frequencies and flows must be non-negative; thus, for afl 9, h, 1, n:

8.O F*1, F hn 1 0

Finally, the objective function to be maximized Is:

L.7 Z MY Feln I

We do not claim that the above scheme yields the maximum possible throughput

of a Program over all possible Implementation schemes of EOL on a network. One reason Is

Maximum Possible Throughput - 271 - Section B.2

that we have assumed that an instance of an event handler is activated and fully executed

on the same node. Implementations in which the script Itself is distributed in the network are

possible. Our analysis can be extended to include such Implementations as well. Another

reason is that higher throughput for a given program may be achieved by optimizing the

program (not its implementation); e.g., by eliminating redundant events, as discussed in

chapter 7. Suppose, for example, the program consists of n event handlers of the form:

on e i

par cause ei+ 1

end ;

for I=1, ... n, where elein and en+ 1 eout. This program can be optimized (by a compiler) to

the following one, thus yielding a higher throughput:

on ein

parcause eout

end;

Thus, optimized programs may yield a throughput which is higher than the one suggested by

our throughput analysis.

As a special case, the throughput analysis can be applied to the virtual system of

chapter 7, assuming a fixed number of processors. Each link in the virtual system has an

unlimited capacity; thus, we substitute in B.2 Tel=O for all e, I. Also, there is no

communication overhead in the virtual system; thus, we substitute in B.3 Ren =Sen=O for all

e, n.

I.
It Is interesting to examine how the linear programming approach handles data

dependency. Where clauses are not reflected in the model. The optimal linear programming

problem solution yields flows of events and frequencies of execution of Instances of event

* handlers from which some data dependency properties can be deduced. The optimal solution

Section B.2 - 272 - Maximum Possible Throughput

assumes that the various events have the properties (parameters) needed for achieving the

maximum throughput. Consider, for example, the following program for computing factorial:

on ein (n: Int) (h }

par_cause el (n, n, 1)
end ;

on e (n, i, p: int) where 1I1 h 2)
par_cause eout (n, p) (p=factorial(n)}

end ;

on e 1 (n, I, p: int) where 1>1 (h 3)
par_cause el (n, I-1, isp) (iterate)

end ;

In the optimal solution, the rates in which events are caused from each of the event classes

ein, el, eout are all equal, say to Fm. The rates in which instances of h1 or h2 are

activated are also equal to Fm. However, the rate in which Instances of h3 are activated is

0. The optimal solution, therefore, assumes that for each input event ein(n) either n=O or

n=1. The maximum throughput of the program really occurs in this case, but it may be not

realistic to assume that all input events satisfy the above assumption.

Can we add Information to the model; e.g., that n assumes values in the range

0-4 with equal probabilities? The answer is positive. According to the added information

= 1 (1 + 1 + 1 +-1 +1) - 3 7 F Similarly, F u(1 - 7) _ 2 3 F TheFh2 5 2 3 4 1 - " 113 60 0 60

solution is to distinguish between events of class e1 activating Instances of h2 , and those

activating instances of h3 .

The way to express such information In our model in a general case is as follows.

Suppose e is an intermediate event class identifier (i.e., eiein and eieout) which appears In

the headings of h1 , hn, once In each event descriptor list, and It is known that

ii

Maximum Possible Throughput - 273 - Section B.2

(1) Fh = iFe for izl,... n where ee1 >0.

e can be replaced by a new set of event class identifiers el , en; el will replace e in the

heading of hi. If for the original program Ceh=K, it is now replaced by n constants Ceih=KO i.

Each instance of h causes Kee events from event class e i instead of K events from event

class e. The new linear programming solution is a more accurate estimate of the throughput,

but it is no longer a bound on the original problem throughput. It is a bound on the

throughput if (1) above is considered to be a given constraint.

K is an integer and KAc i is not necessarily an Integer; this poses no difficulty in

the analysis. Note that (2) the constants oe1 satisfy 1 = 1, or Fh l = Fe = O. The above

follows from the following two observations: First, (3) 1 Fhi S Fe since each iiie an

instance of hi is activated it uses one event from event class e. Second, (4) X Fh| > Fe ;

otherwise events from class e will accumulate in the system. Events cannot accumulate in

our model; this can be seen by summing equation B.1 over all n. From (1), (3), and (4) we

get Fe Fh. = Fe -
oi, or Fe (i -1) = 0; this explains claim (2) above.

Suppose h is an event handler with a script which specifies an event whose

class designator f is a formal parameter of the event handler. f may be bound to different

event class identifiers in different instances of h. How can the appropriate information

about f be expressed in the linear programming constraints? Consider a simple case In

which any Instance of h1 , ... , h n causes activation of an Instance of h in which f Is bound to

e; and other event handlers activate Instances of h In which f Is bound to oth,r event class

identifiers. In such case, Instances of h cause events from class e In a frequency (5)

. Fhl. This sum can be Included In a conservation equation for events of class e.

Section B.2 - 274 - Maximum Possible Throughput

In more general cases, one can find the set S of event class Identifiers to which

f can be bound. S can be found by a simple algorithm which uses transitive closure. Without

such algorithm, an assumption that S contains all event class Identifiers In the program can

be made; this assumption can only result in a higher bound on the throughput. Suppose f

can be bound to e1 ... em; h can be replaced by m distinct event handlers h1 , hm .

Each hi specifies in its script an event from class e i instead of the event associated with

the formal parameter f. The throughput of the original program cannot be higher than that of

the modified program.

The above scheme can yield a throughput bound which is higher than the

maximum possible throughput. A refinement of the above approach can be made if some

control flow analysis (or another source of information such as the user) relates the

frequencies in which f is bound to various event class identifiers to other frequency

variables such as in (5) above. We shall not pursue this direction further.

B.3 Other Event Types

So far we have only dealt with singleuse recurrent events. Let us examine

the difficulties posed by other event types; starting with singleuse nonrecurrent

events. If sngle use nonrecurrent events are treated as If they are single use

recurrent events, the solution to the linear programming problem may be smaller then the

maximum possible throughput. The reason is that computational resources (CPU time and Ink

capacity) may be allocated in the analysis to process events which In fact do not occur.
I.

Ii

Other Event Types - 275 - Section B.3

Suppose e is of a single use nonrecurrent type and an event of class e is

specified in the script of h. Some way to describe the fact that an instance of h can cause

zero or one events from class e Is needed. The solution is quite simple. A new event

handler hI is added; the difference between h and his that an Instance of the latter does

not cause an event from class e. The procedure can be repeated for all event handlers and

all event class identifiers of single use nonrocurrent types. If the script Gf h specifies

one event from each of n distinct single use non_recurrent event classes, 2n- new

event handlers are added.

Another approach can be taken if some information is known about e. For

example, Ceh (which originally was 1) can be replaced by *_-1 to reflect the fact that the

rate In which Instances of h cause events from class e is only oeFh.

Our model cannot handle multi-use events in general. The reason is that this

model can only handle intermediate events which are used (consumed) by the program In the

same rate in which they are caused. Since multi-use events are never consumed, the

above condition can be only satisfied if both rates are zero. Suppose e is of a multi-use

type. Simply selecting Ueh=O for all h, and CehO (according to the script of h) will result in

Fh=O for each h satisfying Ceh>O.

In certain cases multi-use events can be handled In our model. Suppose all

event handlers in the program are singleuse event handlers and It is known that e can be
I.

Implemented as a record variable (as described in chapter 7). If the script of h specifies

n>O events from class e and e appears in m>O event descriptors In the event descriptor list

of h, one can simply select Ceh=n and Ueh=n (independently of m). If, however, n=O then

II'Imr a ~ m 1 = M d m n nl l = i l~ k... . _ .. .: . : ; ... -- -

Section 8.3 - 276 - Other Eveat Types

one can select CehUeh=O.

B.4 The Effect of Managers

This section shows how maximum possible throughput of a given program on a

given network can be calculated when our particular implementation scheme (including

managers) Is chosen. At first, the problem may seem not a simple one because of the

Interaction among the managers. However, simplifying assumptions can be made since we

are Interested in finding a bound on the throughput; these assumptions are made explicit in

the sequel.

For each event class identifier e, there Is a corresponding ECM me; similarly, for

each event handler h, there is a corresponding EHM mh. In this section we assume that

each manager resides on one node of the network and never moves. The node on which

each manager resides is obtained from the solution to the object distribution problem or from

another source. Several copies of the script of an event handler h can exist in various

nodes of the network; mh can send an activation message to any of these nodes in order to

activate an Instance of h. The managers and the scripts interact in a well defined manner.

Figure B.1 shows the possible interactions among managers and scripts for a program

containing 2 event handlers and 3 event classes. Several scripts of each event handler

exist.

'I.

The Effect of Managers -277- Sectim 5.4

Figure B.1 The interactions among managers and scripts

An arc going from mhi to hi represents activation messages. An arc going from I

to mej represents event objects from class ej caused by instances of hi. An arc connecting

managers mi and mj represents messages exchanged between mi and mi. The maximmm

throughput is found similarly to section B.2. The difference is that messages to (from)

managers and CPU requirements of managers are taken Into account. The terminology for the

following analysis is shown In Table B.1.

The total rate in which Instances of h are activated is:

B.8 Fh : -Fhn
n

The total rate in which events from class e are caused Is:

B.9 Fe = CehFh + Fel
h kLin

Conservation equations can be written for the various types of messages In the model

Conservation of events must hold for all e, n:

8.10 D(FeI) + E CehFhn - Mm 0nFe Z 0h

Note the difference between equations 8.1 and 8.10. Here, the term E UehFhn does not
h

appear since event objects from class e are sent to me and not directly to instances of

event handlers. Activation messages from mh to any node n o must be conserved; thus, for

all h, n, n':

B.11 D(FmhnIl) + MmhnFhn - EQ(n,n') Fhn a 0

.

.

Section B.4 - 278 - The Effect of Managers

where EQ(n,n')=l iff n=n', else 0. Conservation of messages from an EHM to an ECM must

hold; thus, for all e, h (e~h), n:

8.12 D(FmhmeI) + Mmhn (-1Fh + -2Fe) -Mmen (aFh + ae2Fe) = 0

ee1 and c2 are constants which can be selected according to the assumptions on the way

mh and me interact. ee represents the number of messages mh sends to me In order to

acquire an event it has previously selectea. O2 represents the number of messages mh

sends to me in order to check if an event of class e matches the heading of h. For the

purpose of finding maximum throughput we can select Oe2=0. A similar constraint on

messages from an ECM to an EHM must hold; thus, for all e, h (e'h), n:

6.13 D(FmemhI) + Mmen (1Fh "4 2 Fe) - Mmhn (lFh + A2Fe) = 0

The roles of 41 and J2 are analogous to those of o1 and *2 respectively. In this model we

assume that messages to the output links of the network are sent by meo. Conservation
eout*

of these messages must hold; thus, for all n:

B.14 D(FmeoutLoutI) + MmeoutnFmeoutL.,
= 0

Since there is only one output event class, the following must hold:

B.15 FmeLout = 0 for all e~eout

The rate in which events arrive to m e must be equal to the sum of the rate In which they

are used and the rate in which they are sent to the output links; thus, for all e:

B.16 Fe = F UehFh + F
h meLout

The link capacity constraint now Includes more terms than equation B.2; for all I-

B.1 7 . TejFeI +). TmhnliFmhnI .TmhmelFmhme I +4 TmemhlmemhI l
. h,n' h,e e,h

+ TmeoutLoutlFm eoutLout 1 1

Note that variables or constants of the form FXI, Txl, Rxi, Sxl, where x Is memh or mhme are

The Effect of Managers - 279 - Section 5.4

only defined if e9h; thus, the qualification e~h is not needed in the above Inequality (and in

similar cases in the sequel).

K(x) defines the communication overhead of receiving and sending messages of

class x on node n.

K(x) = RxnFxI - SxnFxI

x hi(n) x kO(n)

If x is a list (e.g., mhme), E above Is a multiple summation. For each node n, the following
x

CPU constraint should hold:

8.18 K(e) + K(mhn') + K(mhme) + K(memh) + K(m eoutLout) + E PhnFhn +

h

+ E MmenPmen(Fe - FmeLout + -7 MmenPmeLout FmeLout +

e e

+ mhn(PmhhnFh + E P PmhenFe) S 1

h e: e'h

The first 6 terms of B.18 should be clear now. The next two terms represent the load of all

ECM's residing on node n. Pmen is the CPU time to process an event from class e by me on

node n Including handling all relevant messages, if the event is used by the program.

PmeLout is a similar coefficient associated with an event sent by me to the output links.

The last term represents the load of all EHM's residing on node n. Pmhhn Is the CPU time

required by mh on node n in order to acquire an event collection. Pmhen is the CPU time to

process an event from class e by mh on node n without acquiring it. For the purpose of

finding the maximum throughput Pmhen can be selected as 0.

The flows on Input links and output links are restricted as follows:

9.19 Fxi 0 for all xlein and 1.Lin

4'.

Section 8.4 - 280 - The Effect of Managers

0.20 Fxl 3 0 for all ximeoutLout and hLout

All frequencies and flows must be non-negative; thus, for all e, h, I, n, n':

B.21 Fhn, Fel, Ih,, F Imhme, mm, FmeoutLou 0

The objective function to be maximized is:

.22 Z = " Feln

bun

In order to obtain a throughput bound which is closer to the actual throughput,

more constraints can be added to the above set of constraints. Such constraints can

describe limitations of a specific implementation of a manager (e.g., the maximum fi aquency

in which It can Iterate), or available memory on a node. The various extensions to the basic

throughput analysis discussed in the previous sections can also be applied to the analysis

of this section.

B.5 Throughput Analysis Sunmary

It is Interesting to compare the maximum possible throughput of a program

obtained without our specific implementation (section B.2) with that obtained if the effect of

managers is taken into account (section 8.4). This could show how much of the possible

throughput is lost due to our managers overhead. Unfortunately, in both cases the maximum

throughput cannot be expressed as a closed formula in general; thus, such a comparison can

be made only by solving the linear programming problems and comparing the obtained values.

The linear programming approach can be used not only for analyzing a givenI.
program on a given network, but also for analyzing the effects of varying some of the

system parameters on the maximum throughput of a program. For example, the effect of

adding (removing) a processor or a link to the network, changing the capacity of a link,

_ . ii i - . -

Throughput Analysis Summary - 281 - Section B.5

changing the speed of a processor, totally changing the network topology, or modifying the

algorithm of an EHM or an ECM can be found.

i.

1"'I

r --

Appendix C - 282 - Data Flow Performance Evaluation

Appendix C - Data Flow Performance Evaluation

This appendix develops performance bounds for a limited class of EBL programs

on the data flow processor. The class of programs captured by the following discussion Is

identical to that of section B.1. First, a method for computing bounds on the maximum

possible throughput which Is not based on a specific implementation scheme is presented.

Then, a method which specifically refers to our manager based implementation scheme Is

given. The methods are similar to those given in appendix B for a processor .aetwork.

For the analysis, the processor will be represented by the model of Figure C.1.

dkl ~Memory' ao

I.

Figure C.1 The routing networks

We assume that the arbitration network consists of three parts: ac, af, and am; and

similarly, the distribution network consists of three parts: dc, df, and di. We will call the

' above sub-networks routing networks. Input events enter the distribution network at din;

Data Flow Performance Evaluation -283- Appendix C

output events leave the arbitration network at aout.

Most of the terminology is similar to that used in appendix B. Additional

terminology is defined In Table C.1.

f an operator performing a fixed function (e.g., addition, memory access)
nf the number of identical units of f in the system
r a routing network (r=a c , af, am, dc, df, dm)

Fedin, Fmedi n the frequency of evt.nts of class e entering at din (destined to me)

Feaout' Fmeaout the frequency of events of class e leaving at aout (sent by me)

Txr the total time taken by all packets related to: (1) a message of class x

(x=e, medin, meaout, or mee), or (2) all messages required for the

execution of an instance of x (x=h, mhe, or mhh), traversing routing

network r
Pxf the total time required for processing all packets related to: (1) a

message of class x (x=e, medin, meaout, or mee), or (2) the execution of

an instance of x (x=h, mhe, or mhh), on operator f

Classes denoted by x:
e, h as defined earlier
medin an event of class e arriving from din destined to me

meaout an event of class e sent by me to aout

mee an event of class e caused by an Instance of some event handler (i.e.,
not arriving from din) and used by an instance of some event handler

(i.e., not sent to aout)

mhe processing an event from class e by mh (e~h) without acquiring it

mhh acquiring an event collection by mh

Table C.1 Data flow throughput terminology

C.1 Maximum Possible Throughput

This section starts by showing how bounds on the maximum possible throughput

can be computed. It first assumes that enough copies of the script of each event handler

exist in the instruction memory. This assumption is relaxed later in this section. The

constraints are analogous to those of appendix B. The frequency In which events of class e

are caused equals the sam of the frequency in which events of class e are used and the

I,

Section C.1 - 284 - Maximum Possible Throughput

frequency In which events of class e leave the system; thus, for all e:

C. I Fe = E CehFh + Fedin

h

C.2 Fe E UehFh + Fea..

The constraints on the routing networks are:
C.3 YTer(Fe - F e a o u t I forr =

eaout 1frram,dm

C.4 ThrFh< 1 forr2af, df
h

C.5 -TeacFe + E Thac Fh 1

e h

C.6 eTedc(Fe - Feaout) Thdc Fh S 1

e h
The total capacity of the nf operators of type f must not be exceeded; thus, for all f:

C.7 E PhfFh (nf
h

The memory is viewed as an operator. Events arriving through di, must be of class en:

C.8 Fedin w 0 for all e~eln

Similarly, events leaving through aout must be of class eout:

C.9 Feau t u 0 for all e~eout

All frequencies and flows must be non-negative; thus, for alh e, h:

C.10 Fh, Fe, Fedin, Feaou > 0

The objective function to be maximized Is:
1.

C.1 1 Z a Feindin

The above analysis assumes no limitation on the number of copies of the script of an event

handler. If there are nh copies of the script of h, executed as nh pipelines, then the

following constraint must be added for all h:

Ni

'alp-.

Maximum Possible Throughput - 285 - Section C.1

C.12 Fh nhFh max

Fh max Is the maximum frequency In which one copy of the script of h can be executed in

pipeline mode. Fh max can be computed for any given h If minimum delay times of the.outing

networks and minimum execution times of all operators are known.

C.2 The Effect of Managers

Maximum possible throughput when managers are taken into account can be

computed analogously to the scheme of section B.4. The terminology is defined in Table C.1.

Like equations C.1 and C.2, the frequency in which events of class e are caused equals the

total frequency In which they are used or leave the system; thus, for all e:

C.13 Fe = i CehFh + Fmd n

h

C. 4 Fe " UehFh + meaou t

h
There are constraints on the six routing networks; thus, for r = ac, af, am, d c , df, din:

C.15 - Tmeer(Fe - Fmedin - Fmeaout) + TmednrFmedn + F TmeaoutrFmeaout +

e e e _

+ F (TmhhrFh + E TmherFe) + E ThrFh 1

h e: e'^h h

The first three terms represent activities of all ECM's; the fourth term represents activities

of all EHM's; and the last term represents activities of all instances of event handlers. The

constraint on the nf operators of type f contains similar terms; for all f:

I.

"1

I, -- n

Section C.2 - 286 - The Effect of Managers

C.16 Pmeef(Fe - Fmedin - Fmeaout) + PmedinfFmedin + PmeaoutfFmeout +

+ 1 (PmhhfFh + X: PmhefFe) + E PhfFh _ nf

h e: eh h

The constraints on Input and output from the system are:

C.17 Fmedln 0 for all e0ein

C.18 Fmeaout = 0 for all eie o u t

All frequencies and flows must be non-negative; thus, for all e, h:

C.19 Fh, Fe, Fimedln, Fmeaout 0

The objective function to be maximized Is:

C.20 Z = Fm din

As in the previous section, more constraints can be added to describe further limitations

imposed by a specific implementation scheme. For the n pipelines scheme, (like C.1 2) for all

h:

C.21 Fh - nhFh max

C.3 Throughput Analysis Summary

The linear programming approach can be used not only for analyzing a given

program on a given data flow processor, but also for analyzing the effects of varying some

of 'he system parameters on thp maximum possible throughput of a program. For example,

the effect of adding (removing) an operator to the processor, changing the capacity of a

routing network, or modifying the algorithm of an EHM or an ECM can be found. The various

extensions to the basic throughput analysis discussed in appendix B can also be applied to

the throughput analysis of this appendix. It is Interesting to compare the maximum possible

throughput of a program on a network with the maximum possible throughput of the program

N '-

7 AD-AOSI 950 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE-ETC F/
B 9/2

THE EVENT BASED LANGUAGE AND ITS MULTIPLE PROCESSOR IMPLEMENTAT-.ETC(U)
JAN SO A REUVENI N00014-?S-C-0661

U NCLASSIFIED MIT/LCS/TR-226 NL4 M1 l

1.8

11111!2 .4 1 E .6

MICROCOPY RI SOLUrION I F SI tIIAP I
NAIIONAI HUAFN All 0 ItAkU :4 A

-. . - ------ ------ -

Throughput Analysis Summary - 287 - Section C.A

on the data flow processor. Unfortuwately, such a comparison can be made only by solving

the linear programming problems and comparing the obtained values.

I,

.I

- 268 - elograploal Note

Bkograpica Note

Asher Reuveni was born In Kefar-Saba, Israel an November 18, 1947. He grew

up In Natanya Israel, where he graduated from Tcharnihovsky High School in 1965. From

1965 to 1971 he has attended the Technion, Israel Institute of Technology. In Augdst

1969 he received the B.S. degree from the Department of Electrical Engineering In the

Technion, and in July 1971 he received the M.S. degree from the Department of Electrical

Engineering in the Technion. During 1969 to 1971 he was a teaching assistant In the

Technion. He has served In Israel Defense Forces from August 1971 to July 1976.

Mr. Reuveni arrived In the U.S., with his wife Sara and their sons Rony (now 7)

and Guy (now 3), in August 1976. During his doctoral studies at M.I.T. he was supported as

a research assistant in the Real Time Systems Group of the M.I.T. Laboratory for Computer

Science. During this period he has also worked part time at the B.B.N. (Bolt, Beranek and

Newman) company. He received the Ph.D. Degree from the Department of Electrical

Engineering and Computer Science In the M.I.T. In February 1980.

L.

op

OEWICIAL DISThRIBLl LiB?

Defense Technical nfratin Center Dr. A. L. Slafosy

Caran Station Scientific Mvisor
Alexandria, VA 22314 Ommndant of the Mrine Cops

12 copia (oxoe r.-1)
WasIangton, D. C. 20380

Office of Naval Ilaearch 1 copy
omatio Systm Program

Code 437 Office of Na al Ummarch
Arlington, VA 22217 Code 458

2 p Arlington, VA 22217

Office of N lmea-ch
Branch Office t Naval Oman ystei s Cente.r,Coa 91

* DoBilding 114,* Section D HegqMarerso-Ciputer Sciees
666 Stmrmer Street Simulation Depart nt
Boston, KA 02210 Son Diego, CA 92152

1 copy Mr. Lloyd Z. Madlin
1 copy

Office of Naval Fleearch
Banch Officicgo Mr. R. H. Gleismier
536 South Clark Street Naval Shp Ramarch & Deve]r'; t Cntr
Chicago, IL 60605 -ptation & Mathh

1 coy Alina, MD 20084
: I copy

Office of Naval Remearch
U aId of fie/Pasadena Captain Grace M. Hoper (008)
1030 East Green Street Naval Data Autmxation Commend
Pasadena, Ch 91106 lbihii.gton Navy Yard

I copy lding 166
I t, D. C. 20374

now York Ara 1 ocpp
715 amy - 5th floor
Now York, N. Y. 10003 Mr. Kin B. lThmqon

1 cp Tein Joel Director
Infom i &Stem DivisionINaval Desseardi larabory (OP-91T)Technical Irmatio Division Office of Chief of Naval Cpratiom

Code 2627 WkuhiAgton, D. C. 20350
bduington, D. C. 20375 I Caw

6 M91ie5

Assistant Chief for Technology
Office of Naval ?uearch
ode 200

Arlington, VA 22217
* 1 coy

office of Naval research
Code 455
Arlington, VA 22217

, . - -I copy

I I IIIt ,. .. . • 1 :" J =.

